A002898 Number of n-step closed paths on hexagonal lattice.
1, 0, 6, 12, 90, 360, 2040, 10080, 54810, 290640, 1588356, 8676360, 47977776, 266378112, 1488801600, 8355739392, 47104393050, 266482019232, 1512589408044, 8610448069080, 49144928795820, 281164160225520, 1612061452900080, 9261029179733760, 53299490722049520
Offset: 0
Examples
O.g.f.: 1 + 6*x^2 + 12*x^3 + 90*x^4 + 360*x^5 + 2040*x^6 + ... O.g.f.: 1 + 6*x^2*(1+2*x) + 90*x^4*(1+2*x)^2 + 1680*x^6*(1+2*x)^3 + 34650*x^8*(1+2*x)^4 + ... + A006480(n)*x^(2*n)*(1+2*x)^n + .... - _Paul D. Hanna_, Feb 26 2012
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Cyril Banderier, Analytic combinatorics of random walks and planar maps, PhD Thesis, 2001 (>6 Mb).
- Volker Braun, Philip Candelas, and Xenia de la Ossa, Two One-Parameter Special Geometries, arXiv preprint arXiv:1512.08367 [hep-th], 2015.
- Gunther Cornelissen, David Hokken, and Berend Ringeling, The asymptotic Mahler measure of Gaussian periods, arXiv:2507.09303 [math.NT], 2025. See p. 40.
- Cyril Domb, On the theory of cooperative phenomena in crystals, Advances in Phys., 9 (1960), 149-361.
- Davidson Noby Joseph and Igor Boettcher, Walking on Archimedean Lattices: Insights from Bloch Band Theory, arXiv:2507.12662 [cond-mat.stat-mech], 2025. See p. 18.
- Leonard F. Klosinski, Gerald L. Alexanderson and Loren C. Larson, Solution to 1995 Putnam problem A-6, Am. Math. Monthly, 1996, p. 674.
- Gilbert Labelle and Annie Lacasse, Closed paths whose steps are roots of unity, in FPSAC 2011, Reykjavík, Iceland DMTCS proc. AO, 2011, 599-610.
- Yen Lee Loh, A general method for calculating lattice Green functions on the branch cut, arXiv:1706.03083 [math-ph], 2017.
- Gabriele Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- Grzegorz Siudem and Agata Fronczak, Bell polynomials in the series expansions of the Ising model, arXiv:2007.16132 [math-ph], 2020.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n<3, [1, 0, 6][n+1], ((n-1)* n*a(n-1) +24*(n-1)^2*a(n-2) +36*(n-1)*(n-2)*a(n-3))/n^2) end: seq(a(n), n=0..25); # Alois P. Heinz, Dec 08 2020
-
Mathematica
a[n_] := Sum[(-2)^(n-i)*Binomial[i, j]^3*Binomial[n, i], {i, 0, n}, {j, 0, i}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Dec 21 2011, after Vasu Tewari *)
-
PARI
{a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3*x^(2*m)*(1+2*x+x*O(x^n))^m),n)} /* Paul D. Hanna, Feb 26 2012 */
Formula
D-finite with recurrence a(0) = 1, a(1) = 0, a(2) = 6, 36*(n+2)*(n+1)*a(n) +24*(n+2)^2*a(n+1) +(n+3)*(n+2)*a(n+2) -(n+3)^2*a(n+3) = 0.
E.g.f.: (BesselI(0,2*x))^3 + 2*Sum_{k>=1} (BesselI(k,2*x))^3. - Karol A. Penson Aug 18 2006
a(n) = Sum_{i=0..n} (-2)^(n-i)*binomial(n, i)*(Sum_{j=0..i} binomial(i, j)^3). - Vasu Tewari (vasu(AT)math.ubc.ca), Aug 04 2010
O.g.f.: (4/Pi)*EllipticK( 8*sqrt(z^3*(1+3*z))/(1-12*z^2+sqrt((1-6*z)*(1+2*z)^3)) ) / sqrt(2 - 24*z^2 + 2*sqrt((1-6*z)*(1+2*z)^3)). - Sergey Perepechko, Feb 08 2011
O.g.f.: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)*(1+2*x)^n. - Paul D. Hanna, Feb 26 2012
a(n) ~ sqrt(3)*6^n/(2*Pi*n). - Vaclav Kotesovec, Aug 13 2013
O.g.f.: 2F1(1/3,2/3; 1; 27*x^2*(1+2*x)). - R. J. Mathar, Sep 29 2020
Extensions
More terms from David Bloom, Mar 1997
Formula and further terms from Cyril Banderier, Oct 12 2000
Comments