cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A180016 Partial sums of number of n-step closed paths on hexagonal lattice A002898.

Original entry on oeis.org

1, 1, 7, 19, 109, 469, 2509, 12589, 67399, 358039, 1946395, 10622755, 58600531, 324978643, 1813780243, 10169519635, 57273912685, 323755931917, 1836345339961, 10446793409041, 59591722204861, 340755882430381
Offset: 0

Views

Author

Jonathan Vos Post, Jan 13 2011

Keywords

Comments

Also, number of closed paths of length <= n on the honeycomb lattice. The analog on the square lattice is A115130.
The subsequence of primes begins 7, 19, 109, 12589, 67399.

Examples

			a(0) = 1 because there is a unique null walk on no points.
a(1) = 1 because there are no closed paths of length 1 (which connects the origin with one of 6 other points before symmetry is considered).
a(2) = 7 because one adds the 6 closed paths of length 2 (which go from origin to one of 6 surrounding points on the lattice, and return in the opposite directions).
a(8) = 1 + 0 + 6 + 12 + 90 + 360 + 2040 + 10080 + 54810 = 67399.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(-2)^(nn-i)*Binomial[i, j]^3*Binomial[nn, i], {i, 0, nn}, {j, 0, i}],{nn,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 24 2012 *)

Formula

a(n) = Sum_{i=0..n} A002898(i).
D-finite with recurrence: n^2*a(n) = (2*n-1)*n*a(n-1) + (n-1)*(23*n-24)*a(n-2) + 12*(n-4) * (n-1)*a(n-3) - 36*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ 3*sqrt(3)*6^n/(5*Pi*n). - Vaclav Kotesovec, Oct 24 2012
G.f.: hypergeom([1/3,1/3],[1],-27*x*(2*x+1)^2/((3*x+1)*(6*x-1)^2))/((1-x)*(3*x+1)^(1/3)*(1-6*x)^(2/3)). - Mark van Hoeij, Apr 17 2013

A002894 a(n) = binomial(2n, n)^2.

Original entry on oeis.org

1, 4, 36, 400, 4900, 63504, 853776, 11778624, 165636900, 2363904400, 34134779536, 497634306624, 7312459672336, 108172480360000, 1609341595560000, 24061445010950400, 361297635242552100, 5445717990022688400, 82358080713306090000, 1249287673091590440000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of monotonic paths (only moving N and E) in the lattice [0..2n] X [0..2n] that contain the points (0,0), (n,n) and (2n,2n). - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
Expansion of K(k) / (Pi/2) in powers of m/16 = (k/4)^2, where K(k) is the complete elliptic integral of the first kind evaluated at k. - Michael Somos, Mar 04 2003
Square lattice walks that start and end at origin after 2n steps. - Gareth McCaughan and Michael Somos, Jun 12 2004
If A is a random matrix in USp(4) (4 X 4 complex matrices that are unitary and symplectic) then a(n)=E[(tr(A^k))^{2n}] for any k > 4. - Andrew V. Sutherland, Apr 01 2008
From R. H. Hardin, Feb 03 2016 and R. J. Mathar, Feb 18 2016: (Start)
Also, number of 2 X (2n) arrays of permutations of 2n copies of 0 or 1 with row sums equal.
For example, some solutions for n=3:
0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 0 0
1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0 1
There is a simple combinatorial argument to show that this is a(n): We have 2n copies of 0's and 1's and need equal row sums. Therefore there must be n 1's in each of the two rows. Otherwise there are no constraints, so there are C(2n,n) ways of placing the 1's in the first row and independently C(2n,n) ways of placing the 1's in the second. The product is clearly C(2n,n)^2. (End)
Also the even part of the bisection of A241530. One half of the odd part is given in A000894. - Wolfdieter Lang, Sep 06 2016
From Peter Bala, Jan 26 2018: (Start)
Let S = {[1,0,0], [0,1,0], [1,0,1], [0,1,1]} be a set of four column vectors. Then a(n) equals the number of 3 X k arrays whose columns belong to the set S and whose row sums are all equal to n (apply Eger, Theorem 3). An example is given below. Equivalently, a(n) equals the number of lattice paths from (0,0,0) to (n,n,n) using steps (1,0,0), (0,1,0), (1,0,1) and (0,1,1).
The o.g.f. for the sequence equals the diagonal of the rational function 1/(1 - (x + y + x*z + y*z)).
Row sums of A069466. (End)
Also, the constant term in the expansion of (x + 1/x + y + 1/y)^(2n). - Christopher J. Smyth, Sep 26 2018
Number of ways to place 2n^2 nonattacking pawns on a 2n x 2n board. - Tricia Muldoon Brown, Dec 12 2018
For n>0, a(n) is the number of Littlewood polynomials of degree 4n-1 that have a closed Lill path. A polynomial p(x) has a closed Lill path if and only if p(x) is divisible by x^(2)+1. - Raul Prisacariu, Aug 28 2024

Examples

			G.f. = 1 + 4*x + 36*x^2 + 400*x^3 + 4900*x^4 + 63504*x^5 + 853776*x^6 + ... - _Michael Somos_, Aug 06 2014
From _Peter Bala_, Jan 26 2018: (Start)
a(2) = 36: The thirty six 3 x k arrays with columns belonging to the set of column vectors S = {[1,0,0], [0,1,0], [1,0,1], [0,1,1]} and having all row sums equal to 2 are the 6 distinct arrays obtained by permuting the columns of
  /1 1 0 0\
  |0 0 1 1|,
  \0 0 1 1/
the 6 distinct arrays obtained by permuting the columns of
  /0 0 1 1\
  |1 1 0 0|
  \0 0 1 1/
and the 24 arrays obtained by permuting the columns of
  /1 0 1 0\
  |0 1 0 1|. (End)
  \0 0 1 1/
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 591,828.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 8.
  • Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
  • Leonard Lipshitz and A. van der Poorten. "Rational functions, diagonals, automata and arithmetic." In Number Theory, Richard A. Mollin, ed., Walter de Gruyter, Berlin (1990): 339-358.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A069466.
Row 2 of A268367 (even terms).
Equals 4*A060150.
Cf. A000984, A000515, A010370, A054474 (INVERTi transform), A172390, A000897, A002897, A006480, A008977, A186420, A188662, A000894, A241530, A002898 (walks hex lattice).

Programs

  • Magma
    [Binomial(2*n, n)^2: n in [0..20]]; // Vincenzo Librandi, Aug 07 2014
  • Maple
    A002894 := n-> binomial(2*n,n)^2.
  • Mathematica
    CoefficientList[Series[Hypergeometric2F1[1/2, 1/2, 1, 16x], {x, 0, 20}], x]
    Table[Binomial[2n,n]^2,{n,0,20}] (* Harvey P. Dale, Jul 06 2011 *)
    a[ n_] := SeriesCoefficient[ EllipticK[16 x] / (Pi/2), {x, 0, n}]; (* Michael Somos, Aug 06 2014 *)
    a[n_] := 16^n HypergeometricPFQ[{1/2, -2 n, 2 n + 1}, {1, 1}, 1];
    Table[a[n], {n, 0, 19}] (* Peter Luschny, Mar 14 2018 *)
  • PARI
    {a(n) = binomial(2*n, n)^2};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( polcoeff( polcoeff( 1 / (1 - x * (y + z + 1/y + 1/z)) + x * O(x^(2*n)), 2*n), 0), 0))}; /* Michael Somos, Jun 12 2004 */
    
  • Sage
    [binomial(2*n, n)**2 for n in range(17)]  # Zerinvary Lajos, Apr 21 2009
    

Formula

D-finite with recurrence: (n+1)^2*a(n+1) = 4*(2*n + 1)^2*a(n). - Matthijs Coster, Apr 28 2004
a(n) ~ Pi^(-1)*n^(-1)*2^(4*n). - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
G.f.: F(1/2, 1/2; 1; 16*x) = 1 / AGM(1, (1 - 16*x)^(1/2)) = K(4*sqrt(x)) / (Pi/2), where AGM(x, y) is the arithmetic-geometric mean of Gauss and Legendre. - Michael Somos, Mar 04 2003
G.f.: 2*EllipticK(4*sqrt(x))/Pi, using Maple's convention for elliptic integrals.
E.g.f.: Sum_{n>=0} a(n)*x^(2*n)/(2*n)! = BesselI(0, 2x)^2.
a(n) = A000984(n)^2. - Jonathan Vos Post, Jun 17 2007
E.g.f.: (BesselI(0, 2*x))^2 = 1+2*x^2/(U(0)-2*x^2); U(k) = 2*x^2*(2*k+1)+(k+1)^3-2*x^2*(2*k+3)*(k+1)^3/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 23 2011
In generally, for (BesselI(b, 2x))^2=((x^(2*b))/(GAMMA(b+1))^2)*(1+(2*x^2)*(2*b+1)/(Q(0)-(2*x^2)*(2*b+1)); Q(k)=(2*x^2)*(2*k+2*b+1)+(k+1)*(k+b+1)*(k+2*b+1)-(2*x^2)*(k+1)*(k+b+1)*(k+2*b+1)*(2*k+2*b+3)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 23 2011
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - 4*(2*k+1)^2*x*(1+4*x)^2/(4*(2*k+1)^2*x*(1+4*x)^2 + (k+1)^2*(1+4*x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 01 2013
0 = +a(n)*(+393216*a(n+2) -119040*a(n+3) +6860*a(n+4)) +a(n+1)*(-16128*a(n+2) +6928*a(n+3) -465*a(n+4)) +a(n+2)*(+36*a(n+2) -63*a(n+3) +6*a(n+4)) for all n in Z. - Michael Somos, Aug 06 2014
Integral representation as the n-th moment of a positive function W(x) on (0,16), in Maple notation, W(x) = EllipticK(sqrt(1-x/16))/(2*Pi^2*sqrt(x)); a(n) = Integral_{x=0..16} x^n*W(x) dx, n>=0. The function W(x) is singular at x=0 and W(16) = 1/(16*Pi). This representation is unique since W(x) is the solution of the Hausdorff moment problem. - Stanley Smith and Karol A. Penson, Jun 19 2015
a(n) ~ 16^n*(2-2/(8*n+2)^2+21/(8*n+2)^4-671/(8*n+2)^6+45081/(8*n+2)^8)^2/((4*n+1)* Pi). - Peter Luschny, Oct 14 2015
a(n) = binomial(2*n,n)*binomial(2*n,n) = ( [x^n](1 + x)^(2*n) ) *( [x^n](1 + x)^(2*n) ) = [x^n](F(x)^(4*n)), where F(x) = 1 + x + x^2 + 4*x^3 + 20*x^4 + 120*x^5 + 798*x^6 + 5697*x^7 + ... appears to have integer coefficients. For similar results see A000897, A002897, A006480, A008977, A186420 and A188662. - Peter Bala, Jul 14 2016
a(n) = Sum_{k = 0..n} binomial(2*n + k,k)*binomial(n,k)^2. Cf. A005258(n) = Sum_{k = 0..n} binomial(n + k,k)*binomial(n,k)^2. - Peter Bala, Jul 27 2016
a(n) = A241530(2*n), n >= 0. - Wolfdieter Lang, Sep 06 2016
E.g.f.: 2F2(1/2,1/2; 1,1; 16*x). - Ilya Gutkovskiy, Jan 23 2018
a(n) = 16^n*hypergeom([1/2, -2*n, 2*n + 1], [1, 1], 1). - Peter Luschny, Mar 14 2018
The right-hand side of the binomial coefficient identity Sum_{k = 0..n} C(n,k)*C(n+k,k)*C(2*n+2*k,n+k)*(-4)^(n-k) = a(n). - Peter Bala, Mar 16 2018
a(n) = [x^n] (1 - x)^(2*n) * P(2*n,(1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial. Compare with A245086(n) = [x^n] (1 - x)^(2*n) * P(n,(1 + x)/(1 - x)). - Peter Bala, Mar 23 2022
a(n) = Sum_{k=0..n} multinomial(2n [k k (n-k) (n-k)]), which is another way to count random walks on Z^2, with steps of (0,+-1) or (+-1,0), that return to the point of origin after 2n steps (not necessarily for the first time), as is C(2n,n)^2. - Shel Kaphan, Jan 12 2023
0 = a(n)*(+393216*a(n+2) -119040*a(n+3) +6860*a(n+4)) +a(n+1)*(-16128*a(n+2) +6928*a(n+3) -465*a(n+4)) +a(n+2)*(+36*a(n+2) -63*a(n+3) +6*a(n+4)) for n>=0. - Michael Somos, May 30 2023
From Peter Bala, Sep 12 2023: (Start)
Right-hand side of the binomial coefficient identities
1) Sum_{k = 0..n} (-1)^(n+k) * C(n,k)*C(n+k,n)*C(2*n+k,n) = a(n).
2) 2*Sum_{k = 0..n} (-1)^(n+k) * C(n,k)*C(n+k-1,n)*C(2*n+k-1,n) = a(n) for n >= 1.
3) (4/3)*Sum_{k = 0..n} (-1)^(n+k) * C(n,k)*C(n+k,n)*C(2*n+k-1,n) = a(n) for n >= 1. (End)

Extensions

Edited by N. J. A. Sloane, Feb 18 2016

A002899 Number of n-step polygons on f.c.c. lattice.

Original entry on oeis.org

1, 0, 12, 48, 540, 4320, 42240, 403200, 4038300, 40958400, 423550512, 4434978240, 46982827584, 502437551616, 5417597053440, 58831951546368, 642874989479580, 7063600894137216, 77991775777488144, 864910651813116480
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of 2 X n matrices with entries from {1,2,3,4}, with (1) second row a (multiset) permutation of the first, and (2) no constant columns. - David Callan, Aug 25 2009
a(n) is the constant coefficient in the expansion of (x + y + z + 1/x + 1/y + 1/z + x/y + y/z + z/x + y/x + z/y + x/z)^n. - Seiichi Manyama, Oct 26 2019

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[ Binomial[n, k]*(-4)^(n - k)*Sum[ Binomial[k, j]^2*Binomial[2k - 2j, k - j]*Binomial[2j, j], {j, 0, k}], {k, 0, n}]; Array[f, 20, 0]
  • PARI
    {a(n)=sum(k=0, n, binomial(n, k)*(-4)^(n-k)*sum(j=0, k, binomial(k, j)^2*binomial(2*k-2*j, k-j)*binomial(2*j, j)))};
    print(vector(20, n, a(n-1))) \\ David Broadhurst, Feb 06 2008; fixed by Vaclav Kotesovec, Apr 08 2016

Formula

G.f.: hypergeom([1/6, 1/3],[1],108*x^2*(4*x+1))^2. - Mark van Hoeij, Oct 29 2011
Recurrence: n^3*a(n) - 2*n*(2*n-1)*(n-1)*a(n-1) - 16*(n-1)*(5*n^2-10*n+6)*a(n-2) - 96*(n-1)*(n-2)*(2*n-3)*a(n-3) = 0. - R. J. Mathar, Dec 10 2013
a(n) ~ 2^(2*n-2) * 3^(n+3/2) / (Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Apr 08 2016

Extensions

More terms from David Broadhurst, Feb 06 2008

A172634 Number of n X 3 0..2 arrays with row sums 3 and column sums n.

Original entry on oeis.org

1, 1, 7, 31, 175, 991, 5881, 35617, 219871, 1376095, 8710537, 55644337, 358198369, 2320792657, 15120204295, 98984058271, 650725327231, 4293779332927, 28425752310361, 188739799967425, 1256510215733185, 8385127334900305, 56078904057164215, 375796823748323215
Offset: 0

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Comments

Inverse binomial transform of the Franel numbers (A000172). - Paul D. Hanna, Feb 26 2012
a(n) is the constant term in the expansion of (1 + x + y + 1/x + 1/y + x/y + y/x)^n. - Seiichi Manyama, Oct 26 2019
a(n) is the constant term in the expansion of (-1 + (1 + x) * (1 + y) + (1 + 1/x) * (1 + 1/y))^n. - Seiichi Manyama, Oct 27 2019
a(n) is the number of n step closed walks on the hexagonal lattice with loops at each node. A step along a loop leaves the position unchanged. The bijection is as follows: after subtracting 1 from each element in the array, values are -1, 0 or 1 and row and column sums are zero. There are only seven possibilities for each row. An all zero row corresponds with a step along the loop leaving the position unchanged and the others to a unit step in each of the six possible directions. This justifies that this sequence is the binomial transform of A002898. - Andrew Howroyd, May 09 2020

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 31*x^3 + 175*x^4 + 991*x^5 + 5881*x^6 +...
G.f.: A(x) = 1/(1-x) + 6*x^2*(1+x)/(1-x)^4 + 90*x^4*(1+x)^2/(1-x)^7 + 1680*x^6*(1+x)^3/(1-x)^10 + 34650*x^8*(1+x)^4/(1-x)^13 +...+ A006480(n)*x^(2*n)*(1+x)^n/(1-x)^(3*n+1) +...
		

Crossrefs

Column k=3 of A328747 and A334549.

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[(3*k)!/k!^3*x^(2*k)*(1+x)^k/(1-x)^(3*k+1),{k,0,n}],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3*x^(2*m)*(1+x)^m/(1-x + x*O(x^n))^(3*m+1)),n)} \\ Paul D. Hanna, Feb 26 2012
    
  • PARI
    a(n)={sum(i=0, n, sum(j=0, i, (-1)^(n-i)*binomial(n, i)*binomial(i, j)^3))} \\ Andrew Howroyd, May 09 2020

Formula

From Paul D. Hanna, Feb 26 2012: (Start)
G.f.: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)*(1+x)^n / (1-x)^(3*n+1).
Equals the binomial transform of A002898.
a(n) = Sum_{k=0..n} (-1)^(n+k) * binomial(n, k) * A000172(k), where A000172(k) = Sum_{j=0..k} binomial(k,j)^3 forms the Franel numbers.
(End)
Recurrence: n^2*a(n) = (2*n-1)^2*a(n-1) + 19*(n-1)^2*a(n-2) + 14*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 7^(n+1)*sqrt(3)/(12*Pi*n). - Vaclav Kotesovec, Oct 20 2012
G.f.: hypergeom([1/3, 1/3],[1],-27*x*(x+1)^2/((1-7*x)^2*(1+2*x)))/((1+2*x)^(1/3)*(1-7*x)^(2/3)). - Mark van Hoeij, May 07 2013

Extensions

a(0)=1 prepended by Andrew Howroyd, May 09 2020

A288460 Chebyshev coefficients of density of states of triangular lattice.

Original entry on oeis.org

1, 0, -24, 48, 288, -2880, 3072, 64512, -400896, -245760, 12496896, -50688000, -159547392, 2133540864, -4964253696, -42047373312, 313193005056, -179042254848, -8158768005120, 36487616790528, 65397155954688, -1204277276049408, 2427936640598016, 19127143199932416, -107713462133587968, -223101299070074880
Offset: 0

Views

Author

Yen-Lee Loh, Jun 16 2017

Keywords

Comments

This is the sequence of integers z^n g_n for n=0,1,2,3,... where g_n are the coefficients in the Chebyshev polynomial expansion of the density of states of the triangular lattice, g(w) = 1 / (Pi*sqrt(1-w^2)) * Sum_{n>=0} (2-delta_n) g_n T_n(w). Here |w| <= 1 and delta is the Kronecker delta. The coordination number is z=6. Note that the triangular lattice is sometimes called the hexagonal lattice.
The Chebyshev coefficients, g_n, are related to the number of walks on the lattice that return to the origin, W_n, as g_n = Sum_{k=0..n} a_{nk} z^{-k} W_k, where z is the coordination number of the lattice and a_{nk} are the coefficients of Chebyshev polynomials such that T_n(x) = Sum_{k=0..n} a_{nk} x^k.
The author was unable to obtain a closed form for z^n g_n.

Crossrefs

Related to numbers of walks returning to origin, W_n, on triangular lattice (A002898).

Programs

  • Mathematica
    Whon[n_] := If[OddQ[n], 0, Sum[Binomial[n/2,j]^2 Binomial[2j,j], {j, 0, n/2}]];
    Wtri[n_] := Sum[Binomial[n,j] (-3)^(n-j) Whon[2j], {j, 0, n}];
    ank[n_, k_] := SeriesCoefficient[ChebyshevT[n, x], {x, 0, k}];
    zng[n_] := Sum[ank[n, k]*6^(n - k)*Wtri[k], {k, 0, n}];
    Table[zng[n], {n,0,50}]

A265089 T(n,k)=Number of nXk arrays containing k copies of 0..n-1 with row sums equal and column sums equal.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 0, 6, 0, 1, 6, 12, 24, 0, 1, 0, 90, 0, 120, 0, 1, 20, 360, 4464, 1080, 720, 0, 1, 0, 2040, 0, 493920, 0, 6300, 0, 1, 70, 10080, 2850360, 75502080, 128269440, 3135720, 45360, 0, 1, 0, 54810, 0, 16074373800, 0, 57943903500, 0, 589680, 0, 1, 252
Offset: 1

Views

Author

R. H. Hardin, Dec 01 2015

Keywords

Comments

Table starts
.1......1.......1...........1........1...........1.............1..........1
.0......2.......0...........6........0..........20.............0.........70
.0......6......12..........90......360........2040.........10080......54810
.0.....24.......0........4464........0.....2850360.............0.2645541360
.0....120....1080......493920.75502080.16074373800.3565914584400
.0....720.......0...128269440........0
.0...6300.3135720.57943903500
.0..45360.......0
.0.589680
.0

Examples

			Some solutions for n=4 k=4
..3..0..1..2....0..3..3..0....1..1..2..2....3..1..2..0....1..0..3..2
..3..1..2..0....3..0..0..3....2..3..0..1....3..1..0..2....1..2..0..3
..0..2..1..3....1..1..2..2....0..2..1..3....0..1..3..2....2..1..3..0
..0..3..2..1....2..2..1..1....3..0..3..0....0..3..1..2....2..3..0..1
		

Crossrefs

Row 2 is A126869.
Row 3 is A002898.

A328748 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is Sum_{i=0..n} (-2)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^k.

Original entry on oeis.org

1, 1, 0, 1, 0, -1, 1, 0, 0, 2, 1, 0, 2, 0, -3, 1, 0, 6, 0, 0, 4, 1, 0, 14, 12, 6, 0, -5, 1, 0, 30, 72, 90, 0, 0, 6, 1, 0, 62, 300, 882, 360, 20, 0, -7, 1, 0, 126, 1080, 6690, 8400, 2040, 0, 0, 8, 1, 0, 254, 3612, 44706, 124920, 95180, 10080, 70, 0, -9
Offset: 0

Views

Author

Seiichi Manyama, Oct 27 2019

Keywords

Comments

T(n,k) is the constant term in the expansion of (-2 + Product_{j=1..k-1} (1 + x_j) + Product_{j=1..k-1} (1 + 1/x_j))^n for k > 0.

Examples

			Square array begins:
    1, 1, 1,   1,    1,      1, ...
    0, 0, 0,   0,    0,      0, ...
   -1, 0, 2,   6,   14,     30, ...
    2, 0, 0,  12,   72,    300, ...
   -3, 0, 6,  90,  882,   6690, ...
    4, 0, 0, 360, 8400, 124920, ...
		

Crossrefs

Columns k=0..5 give A097141(n+1), A000007, A126869, A002898, A328735, A328751.
T(n,n+1) gives A328814.

Programs

  • Mathematica
    T[n_, k_] := Sum[(-2)^(n-i) * Binomial[n, i] * Sum[Binomial[i, j]^k, {j, 0, i}], {i, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 06 2021 *)

A198808 Number of closed paths of length n whose steps are 12th roots of unity, U_12(n).

Original entry on oeis.org

1, 0, 12, 24, 396, 2160, 23160, 186480, 1845900, 17213280, 171575712, 1703560320, 17365421304, 178323713568, 1856554560432, 19487791106784, 206411964321420, 2201711191213248, 23642813637773616, 255355132936441824, 2772650461148938656
Offset: 0

Views

Author

Simon Plouffe, Oct 30 2011

Keywords

Comments

U_12(n), (comment in article): For each m >= 1, the sequence (U_m(N)), N >= 0 is P-recursive but is not algebraic when m > 2.

Crossrefs

Programs

  • Maple
    N:= 50: # to get a(0)..a(N)
    U6:= rectoproc({(36*n^2+180*n+216)*a6(n+1)+(24*n^2+144*n+216)*a6(n+2)+(n^2+7*n+12)*a6(n+3)+(-n^2-8*n-16)*a6(n+4), a6(0) = 1, a6(1) = 0, a6(2) = 6, a6(3) = 12}, a6(n),remember):
    S:= add(U6(n)*x^n/n!,n=0..N)^2:
    seq(coeff(S,x,n)*n!,n=0..N); # Robert Israel, Nov 15 2016
  • Mathematica
    terms = 21;
    g[x_] = BesselI[0, 2x]^3 + 2 Sum[BesselI[k, 2x]^3, {k, 1, terms}];
    CoefficientList[g[x]^2 + O[x]^terms, x] Range[0, terms-1]! (* Jean-François Alcover, Sep 18 2018, after Robert Israel *)
  • PARI
    seq(n)={Vec(serlaplace(sum(k=0, n, if(k,2,1)*(x^k*besseli(k, 2*x + O(x^(n-k+1)))/k!)^3)^2))} \\ Andrew Howroyd, Nov 01 2018

Formula

E.g.f.: g(x)^2, where g(x) is the e.g.f. of A002898. - Robert Israel, Nov 15 2016
a(n) ~ 2^(2*n) * 3^(n+1) / (Pi^2 * n^2). - Vaclav Kotesovec, Apr 30 2024

A070190 Expansion of e.g.f. I_0(2*x)^5 + 2*Sum_{k>=1} I_k(2*x)^5, where I_n(z) are modified Bessel functions of order n.

Original entry on oeis.org

1, 0, 10, 0, 270, 240, 10900, 25200, 551950, 2116800, 32458860, 169092000, 2120787900, 13427013600, 149506414200, 1075081207200, 11143223412750, 87198375264000, 865743970019500, 7171730187336000, 69416724049550020
Offset: 0

Views

Author

Karol A. Penson, Apr 26 2002

Keywords

Comments

A modification of e.g.f. of A002898, where the exponent of I, which is 3, is here replaced by 5.
U_10(n), in Labelle-Lacasse paper, number of closed paths of length n whose steps are 10th roots of unity.

Crossrefs

Cf. A002898.

Programs

  • Mathematica
    With[{nmax = 25}, CoefficientList[Series[BesselI[0, 2*x]^5 + 2*Sum[BesselI[k, 2*x]^5, {k, 1, 2*nmax}], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 05 2018 *)
  • PARI
    seq(n)={Vec(serlaplace(sum(k=0, n, if(k,2,1)*(x^k*besseli(k, 2*x + O(x^(n-k+1)))/k!)^5)))} \\ Andrew Howroyd, Nov 01 2018

Formula

a(n) ~ 5^(3/2) * 10^n / (4*Pi^2*n^2). - Vaclav Kotesovec, Jun 08 2021

A337905 The number of walks of n steps on the hexagonal lattice that start at the origin and end at the adjacent vertex (1,0).

Original entry on oeis.org

1, 2, 15, 60, 340, 1680, 9135, 48440, 264726, 1446060, 7996296, 44396352, 248133600, 1392623232, 7850732175, 44413669872, 252098234674, 1435074678180, 8190821465970, 46860693370920, 268676908816680, 1543504863288960, 8883248453674920, 51210412534906560
Offset: 1

Views

Author

R. J. Mathar, Sep 29 2020

Keywords

Examples

			There are a(2)=2 paths with 2 steps: UD or DU, where R=(1,0), L=(-1,0), U=(1/2,sqrt(3)/2), u=(-1/2,sqrt(3)/2), D=(1/2,-sqrt(3)/2), d=(-1/2,-sqrt(3)/2).
There are a(3)=15 paths with 3 steps: 6 paths permutations of RuD, 6 permutations of RUd, and 3 permutations of RRL.
		

Crossrefs

Cf. A002898 (returns to origin), A337906, A337907.

Programs

  • Maple
    HexLat := proc(n,finx,finy)
        local a,L,R;
        a := 0 ;
        for L from 0 to n do
        for R from modp(n+finy-L,2) to n-L by 2 do
            a := a+ binomial(n,L) *binomial(n-L,R) *binomial(n-L-R,n/2+L/2-3*R/2+finx) *binomial(n-L-R,(n-L-R-finy)/2) ;
        end do:
        end do:
        a ;
    end proc:
    seq(HexLat(n,0,0),n=0..15) ; # A002898
    seq(HexLat(n,1,0),n=0..15) ; # A337905
    seq(HexLat(n,2,0),n=0..15) ; # A337906
    seq(HexLat(n,1/2,1),n=0..15) ; # A337905
  • Mathematica
    HexLat[n_, finx_, finy_] := Module[{a = 0, L, R}, For[L = 0, L <= n, L++, For[R = Mod[n + finy - L, 2], R <= n - L, R += 2, a = a + Binomial[n, L]*Binomial[n - L, R]*Binomial[n - L - R, n/2 + L/2 - 3*R/2 + finx]*Binomial[n - L - R, (n - L - R - finy)/2]]]; a];
    Table[HexLat[n, 1, 0], {n, 1, 24}] (* Jean-François Alcover, Jun 25 2023, after R. J. Mathar *)
  • PARI
    seq(n)={my(g=sum(m=1, n+1, (3*m)!/m!^3*x^(2*m)*(1+2*x)^m, O(x^(n+2)))); Vec(g/6)} \\ Andrew Howroyd, Aug 09 2025

Formula

D-finite with recurrence (n+1)^2*a(n) -n*(n+1)*a(n-1) -24n^2*a(n-2) -36*n*(n-1)*a(n-3)=0.
a(n+1) = A002898(n)+2*a(n)+2*A337907(n)+A337906(n).
a(n) ~ 2^(n-1) * 3^(n + 1/2) / (Pi*n). - Vaclav Kotesovec, Apr 30 2024
a(n) = A002898(n+1) / 6. - Andrew Howroyd, Aug 09 2025
Showing 1-10 of 26 results. Next