A002995 Number of unlabeled planar trees (also called plane trees) with n nodes.
1, 1, 1, 1, 2, 3, 6, 14, 34, 95, 280, 854, 2694, 8714, 28640, 95640, 323396, 1105335, 3813798, 13269146, 46509358, 164107650, 582538732, 2079165208, 7457847082, 26873059986, 97239032056, 353218528324, 1287658723550, 4709785569184
Offset: 0
Examples
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 14*x^7 + 34*x^8 + 95*x^9 + ... a(7) = 14 = 11 + 3 because there are 11 trees with 7 nodes but three of them can be embedded in a plane in two ways. These three trees have degree sequences 4221111, 3321111, 3222111, where there are two trees with each degree sequence but in the first, the two nodes of degree two are adjacent, in the second, the two nodes of degree three are adjacent, and in the third, the node of degree three is adjacent to two nodes of degree two. - _Michael Somos_, Aug 19 2014
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 304.
- A. Errera, De quelques problèmes d'analysis situs, Comptes Rend. Congr. Nat. Sci. Bruxelles, (1930), 106-110.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 67, (3.3.26).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=0..200
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 285 (4.1.26), 291 (4.1.48)
- CombOS - Combinatorial Object Server, Generate free plane trees
- R. Cori and M. Marcus, Counting non-isomorphic chord diagrams, Theor. Comp. Sci. 204 (1998) 55-75, Corollary 5.2.
- Paul Drube and Puttipong Pongtanapaisan, Annular Non-Crossing Matchings, Journal of Integer Sequences, Vol. 19 (2016), #16.2.4.
- A. Errera, Reviews of two articles on Analysis Situs, from Fortschritte [Annotated scanned copy]
- D. Feldman, Counting plane trees, Unpublished manuscript, 1992. (Annotated scanned copy)
- Bernold Fiedler, Scalar polynomial vector fields in real and complex time, arXiv:2410.05043 [math.DS], 2024. See pp. 21, 50.
- Bernold Fiedler, Real-time blow-up and connection graphs of rational vector fields on the Riemann sphere, arXiv:2504.20503 [math.DS], 2025. See p. 23.
- F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335.
- F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335. (Annotated scanned copy)
- G. Labelle, Sur la symétrie et l'asymétrie des structures combinatoires, Theor. Comput. Sci. 117, No. 1-2, 3-22 (1993).
- P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
- Torsten Mütze, Proof of the middle levels conjecture, arXiv preprint arXiv:1404.4442 [math.CO], 2014.
- Torsten Mütze, A book proof of the middle levels theorem, arXiv:2306.13019 [math.CO], 2023.
- Torsten Mütze and Franziska Weber, Construction of 2-factors in the middle layer of the discrete cube, arXiv preprint arXiv:1111.2413 [math.CO], 2011.
- Torsten Mütze and F. Weber, Construction of 2-factors in the middle layer of the discrete cube, Journal of Combinatorial Theory, Series A, 119(8) (2012), 1832-1855.
- J. Sawada, Generating rooted and free plane trees, ACM Transactions on Algorithms, Vol. 2 No. 1 (2006), 1-13.
- Seunghyun Seo and Heesung Shin, Two involutions on vertices of ordered trees, FPSAC'02 (2002). (see p_n).
- Alexander Stoimenow, On the number of chord diagrams, Discr. Math. 218 (2000), 209-233. See Table 1.
- D. W. Walkup, The number of plane trees, Mathematika, vol. 19, No. 2 (1972), 200-204.
- Index entries for sequences related to trees
Crossrefs
Programs
-
Maple
with (powseries): with (combstruct): n := 27: Order := n+2: sys := {C = Cycle(B), B = Union(Z,Prod(B,B))}: G003239 := (convert(gfseries(sys,unlabeled,x) [C(x)], polynom)) / x: G000108 := convert(taylor((1-sqrt(1-4*x)) / (2*x),x),polynom): G002995 := 1 + G003239 + (eval(G000108,x=x^2) - G000108^2)/2: A002995 := 1,1,1,seq(coeff(G002995,x^i),i=1..n); # Ulrich Schimke, Apr 05 2002 with(combinat): with(numtheory): m := 2: for p from 2 to 28 do s1 := 0: s2 := 0: for d from 1 to p do if p mod d = 0 then s1 := s1+phi(p/d)*binomial(m*d, d) fi: od: for d from 1 to p-1 do if gcd(m, p-1) mod d = 0 then s2 := s2+phi(d)*binomial((p*m)/d, (p-1)/d) fi: od: printf(`%d, `, (s1+s2)/(m*p)-binomial(m*p, p)/(p*(m-1)+1)) od : # Zerinvary Lajos, Dec 01 2006
-
Mathematica
a[0] = a[1] = 1; a[n_] := (1/(2*(n-1)))*Sum[ EulerPhi[(n-1)/d]*Binomial[2*d, d], {d, Divisors[n-1]}] - CatalanNumber[n-1]/2 + If[ EvenQ[n], CatalanNumber[n/2-1]/2, 0]; Table[ a[n], {n, 0, 29}] (* Jean-François Alcover, Mar 07 2012, from formula *)
-
PARI
catalan(n) = binomial(2*n, n)/(n+1); a(n) = if (n<2, 1, n--; sumdiv(n, d, eulerphi(n/d)*binomial(2*d, d))/(2*n) - catalan(n)/2 + if ((n-1) % 2, 0, catalan((n-1)/2)/2)); \\ Michel Marcus, Jan 23 2016
Formula
Extensions
More terms, formula from Christian G. Bower, Dec 15 1999
Name corrected ("labeled" --> "unlabeled") by David Callan, Aug 19 2014
Comments