A003231 a(n) = floor(n*(sqrt(5)+5)/2).
3, 7, 10, 14, 18, 21, 25, 28, 32, 36, 39, 43, 47, 50, 54, 57, 61, 65, 68, 72, 75, 79, 83, 86, 90, 94, 97, 101, 104, 108, 112, 115, 119, 123, 126, 130, 133, 137, 141, 144, 148, 151, 155, 159, 162, 166, 170, 173, 177, 180, 184, 188, 191, 195, 198, 202, 206, 209
Offset: 1
References
- Dekking, Michel, and Ad van Loon. "On the representation of the natural numbers by powers of the golden mean." arXiv preprint arXiv:2111.07544 (2021); Fib. Quart. 61:2 (May 2023), 105-118.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- L. Carlitz, R. Scoville and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
- Michel Dekking and Ad van Loon, On the representation of the natural numbers by powers of the golden mean, arXiv:2111.07544 [math.NT], 15 Nov 2021.
- Scott V. Tezlaf, On ordinal dynamics and the multiplicity of transfinite cardinality, arXiv:1806.00331 [math.NT], 2018. See p. 9.
- Index entries for sequences related to Beatty sequences
Programs
-
Haskell
a003231 = floor . (/ 2) . (* (sqrt 5 + 5)) . fromIntegral -- Reinhard Zumkeller, Oct 03 2014
-
Magma
[Floor(n*(Sqrt(5)+5)/2): n in [1..100]]; // Vincenzo Librandi, Oct 23 2014
-
Maple
A003231:=n->floor(n*(sqrt(5)+5)/2): seq(A003231(n), n=1..100); # Wesley Ivan Hurt, Aug 06 2015
-
Mathematica
With[{c=(Sqrt[5]+5)/2}, Floor[c*Range[60]]] (* Harvey P. Dale, Oct 01 2012 *)
-
PARI
a(n)=floor(n*(sqrt(5)+5)/2)
-
PARI
a(n)=(5*n+sqrtint(5*n^2))\2; \\ Michel Marcus, Nov 14 2023
-
Python
from math import isqrt def A003231(n): return (n+isqrt(5*n**2)>>1)+(n<<1) # Chai Wah Wu, Aug 25 2022
Formula
a(n) = 2*n + A000201(n). - R. J. Mathar, Aug 22 2014
Extensions
Better description and more terms from Michael Somos, Jun 07 2000
Comments