A003631 Primes congruent to 2 or 3 modulo 5.
2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 103, 107, 113, 127, 137, 157, 163, 167, 173, 193, 197, 223, 227, 233, 257, 263, 277, 283, 293, 307, 313, 317, 337, 347, 353, 367, 373, 383, 397, 433, 443, 457, 463, 467, 487, 503, 523, 547, 557, 563, 577
Offset: 1
References
- F. W. Dodd, Number Theory in the Quadratic Field with Golden Section Unit, Polygon Publishing House, Passaic, NJ 07055, 1983, Appendix B, pp. 128 - 150.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Chap. X, p. 150, Chap. XV, Theorem 257 (2), p. 222, Oxford University Press, Fifth edition.
- H. Hasse, Number Theory, Springer-Verlag, NY, 1980, p. 498.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. N. Vorob'ev, Fibonacci Numbers, Pergamon Press, 1961.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Henri Darmon, Andrew Wiles's Marvelous Proof, Notices of the AMS (2017), Volume 64, Number 3 pp. 209-216. See p. 211.
- Index to sequences related to decomposition of primes in quadratic fields
Programs
-
Haskell
a003631 n = a003631_list !! (n-1) a003631_list = filter ((== 1) . a010051') a047221_list -- Reinhard Zumkeller, Nov 27 2012, Jul 19 2011
-
Magma
[ p: p in PrimesUpTo(1000) | p mod 5 in {2, 3} ]; // Vincenzo Librandi, Aug 07 2012
-
Mathematica
Select[ Prime[Range[106]], MemberQ[{2, 3}, Mod[#, 5]] &] (* Robert G. Wilson v, Sep 12 2011 *) a[ n_] := If[ n < 1, 0, Module[{c = 0, m = 0}, While[ c < n, If[ PrimeQ[++m] && KroneckerSymbol[5, m] == -1, c++]]; m]]; (* Michael Somos, Nov 24 2018 *)
-
PARI
list(lim)=select(n->n%5==2||n%5==3,primes(primepi(lim))) \\ Charles R Greathouse IV, Jul 25 2011
-
PARI
{a(n) = if( n < 1, 0, my(c ,m); while( c < n, if( isprime(m++) && kronecker(5, m) == -1, c++)); m)}; /* Michael Somos, Aug 14 2012 */
Formula
a(n) ~ 2n log n. - Charles R Greathouse IV, Jun 19 2017
Comments