cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A342604 a(n) = Sum_{j=1..n} A003718(j-1)*prime(j).

Original entry on oeis.org

2, 5, 10, 17, 39, 52, 69, 126, 195, 224, 255, 403, 649, 821, 868, 921, 1216, 1826, 2496, 2851, 2924, 3003, 3501, 4836, 6776, 8291, 8909, 9016, 9125, 9916, 12583, 17168, 21963, 24882, 25925, 26076, 26233, 27537, 32213, 41901, 54431, 64567, 69915, 71459, 71656, 71855, 73754, 81782, 100850, 129704
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Mar 16 2021

Keywords

Examples

			a(3) = A003718(0)*prime(1) + A003718(1)*prime(2) + A003718(2)*prime(3) = 1*2 + 1*3 + 1*5 = 10.
		

Crossrefs

Programs

  • Maple
    p:= 1: R:= NULL:
    for n from 0 to 14 do
      for k from 0 to n do
        p:= nextprime(p);
        R:= R, binomial(n,k)*p
    od od:
    ListTools:-PartialSums([R]):

A296839 Expansion of e.g.f. tan(x*tan(x/2)) (even powers only).

Original entry on oeis.org

0, 1, 1, 33, 437, 22205, 978873, 81005113, 7356832669, 949918117653, 142805534055905, 27120922891214801, 6016195462632487941, 1592800634594574194413, 486576430503128985793417, 171866951067212728072402665, 69025662074064538734826793453
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2017

Keywords

Examples

			tan(x*tan(x/2)) = x^2/2! + x^4/4! + 33*x^6/6! + 437*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[Tan[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] tan(x*tan(x/2)).
a(n) ~ c * d^n * n^(2*n + 1/2) / exp(2*n), where d = 16/Pi^2 = 1.621138938277404343102071411355642222469740394755... is the root of the equation tan(1/sqrt(d)) = Pi*sqrt(d)/4 and c = 1.75568815831... - Vaclav Kotesovec, Dec 21 2017, updated Mar 16 2024

A003721 Expansion of e.g.f. tan(tanh(x)) (odd powers only).

Original entry on oeis.org

1, 0, -8, 112, -128, -109824, 8141824, -353878016, -9666461696, 5151942574080, -825073851170816, 76429076694827008, 2051308253366714368, -2361338488910424047616, 171581865952588387581952
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[Tan[Tanh[x]],{x,0,nn}],x] Range[0,nn-1]!,{2,-1,2}]] (* Harvey P. Dale, Nov 05 2011 *)
  • Maxima
    a(n):=sum(((sum(j!*2^(2*i+1-j-1)*(-1)^(i+j+1)*stirling2(2*i+1,j),j,1,2*i+1))*sum(binomial(k-1,2*i)*k!*(-1)^(1+k)*2^(2*n-k-1)*stirling2(2*n-1,k),k,2*i+1,2*n-1))/(2*i+1)!,i,0,(n-1)); /* Vladimir Kruchinin, Jun 10 2011 */

Formula

a(n) = Sum_{i=0..(n-1)} ( ( Sum_{j=1..2*i+1} j!*2^(2*i+1-j-1)*(-1)^(i+j+1)*Stirling2(2*i+1,j) ) * Sum_{k=2*i+1..2*n-1} binomial(k-1,2*i)*k!*(-1)^(1+k)*2^(2*n-k-1)*Stirling2(2*n-1,k) )/(2*i+1)!. - Vladimir Kruchinin, Jun 10 2011

A296465 Expansion of e.g.f. arctanh(arctanh(x)) (odd powers only).

Original entry on oeis.org

1, 4, 88, 4688, 459520, 71876352, 16428530688, 5167215464448, 2140879726411776, 1130276555155243008, 740796870212763254784, 590192778209307913617408, 561748717440430309770264576, 629564244208933873601143111680, 820602153197407426121272991416320, 1230877720962045060728502509025361920
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 13 2017

Keywords

Examples

			arctanh(arctanh(x)) = x/1! + 4*x^3/3! + 88*x^5/5! + 4688*x^7/7! + 459520*x^9/9! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[ArcTanh[ArcTanh[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
    nmax = 16; Table[(CoefficientList[Series[(Log[2 - Log[1 - x] + Log[1 + x]] - Log[2 + Log[1 - x] - Log[1 + x]])/2, {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]

Formula

E.g.f.: arctan(arctan(x)) (odd powers only, absolute values).
E.g.f.: (log(2 - log(1 - x) + log(1 + x)) - log(2 + log(1 - x) - log(1 + x)))/2 (odd powers only).
a(n) ~ (2*n)! * ((exp(2) + 1)/(exp(2) - 1))^(2*n+1). - Vaclav Kotesovec, Dec 13 2017

A009707 Expansion of e.g.f. tan(tan(x)*x) (even powers only).

Original entry on oeis.org

0, 2, 8, 336, 15616, 1450240, 185032704, 33566984192, 7971973332992, 2424984197529600, 915532582868746240, 420569934453637906432, 230845747512083447021568, 149228982402223336708898816
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[(CoefficientList[Series[Tan[x*Tan[x]], {x, 0, 2*nmax}], x] * Range[0, 2 nmax]!)[[n]], {n, 1, 2*nmax + 1, 2}] (* Vaclav Kotesovec, Dec 21 2017 *)

Formula

a(n) ~ c * d^n * n^(2*n + 1/2) / exp(2*n), where d = 3.9786913954409425781217887822690623430980810... is the root of the equation tan(2/sqrt(d)) = Pi*sqrt(d)/4 and c = 1.4057183994645... - Vaclav Kotesovec, Dec 21 2017

Extensions

Extended and signs tested Mar 15 1997 by Olivier Gérard.

A003716 Expansion of e.g.f. tan(sinh(x)) (odd powers only).

Original entry on oeis.org

1, 3, 37, 1015, 47881, 3459819, 354711853, 48961863007, 8754050024209, 1967989239505875, 543326939019354421, 180718022989699819207, 71275877445849484090393, 32890432371345908634652347, 17555593768891213894861569085
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Tan[ Sinh[ x ] ] (* Odd Part *)
    nn = 20; Table[(CoefficientList[Series[Tan[Sinh[x]], {x, 0, 2*nn+1}], x] * Range[0, 2*nn+1]!)[[n]], {n, 2, 2*nn, 2}] (* Vaclav Kotesovec, Feb 16 2015 *)
  • Maxima
    a(n):=sum(((-1)^(k-1)+1)/(2^k*k!)*sum((-1)^i*(k-2*i)^n*binomial(k,i),i,0,k)*(sum(j!*2^(k-j-1)*(-1)^((k+1)/2+j)*stirling2(k,j),j,1,k)),k,1,n); /* Vladimir Kruchinin, Apr 20 2011 */

Formula

a(n) = Sum_{k=1..n} ((-1)^(k-1)+1)/(2^k*k!) * ( Sum_{i=0..k} (-1)^i*(k-2*i)^n *binomial(k,i) ) * ( Sum_{j=1..k} j! * 2^(k-j-1) * (-1)^((k+1)/2+j) * stirling2(k,j) ). - Vladimir Kruchinin, Apr 20 2011
a(n) ~ 4 * (2*n+1)! / (sqrt(4+Pi^2) * (log((Pi + sqrt(4+Pi^2))/2))^(2*n+2)). - Vaclav Kotesovec, Feb 16 2015

A009817 Expansion of e.g.f. tanh(tan(x)*x) (even powers only).

Original entry on oeis.org

0, 2, 8, -144, -11264, -323840, 36347904, 8388294656, 620426657792, -168731721990144, -79627879039631360, -11099857853570613248, 5627175549005859913728, 4469405304978356270268416
Offset: 0

Views

Author

R. H. Hardin, Mar 15 1996

Keywords

Crossrefs

Programs

  • Maple
    S:= series(tanh(tan(x)*x),x,41):
    seq(coeff(S,x,n)*n!,n=0..40,2); # Robert Israel, Dec 21 2017
  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[Tanh[Tan[x]*x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Oct 28 2013 *)
  • PARI
    first(n) = x='x+O('x^(2*n-1)); vecextract(Vec(serlaplace(tanh(tan(x)*x)), -2*n), (4^n - 1)/3) \\ Iain Fox, Dec 21 2017

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Prior Mathematica program replaced by Harvey P. Dale, Oct 28 2013

A296790 Expansion of e.g.f. sec(x*sec(x)) (even powers only).

Original entry on oeis.org

1, 1, 17, 601, 38849, 4022641, 609933521, 127391254537, 35067716300033, 12304447787106529, 5360597104269331985, 2839145693984474128057, 1796556232541725248396737, 1338623568393194541863879761, 1160057210771530210422755155409, 1156898060700987368136296212581481
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 20 2017

Keywords

Examples

			sec(x*sec(x)) = 1 + x^2/2! + 17*x^4/4! + 601*x^6/6! + 38849*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[Sec[x Sec[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] sec(x*sec(x)).
a(n) ~ c * d^n * n^(2*n + 1/2) / exp(2*n), where d = 4.5851486299312178337601256220116584724159... is the real root of the equation sqrt(d) * cos(2/sqrt(d)) = 4/Pi and c = 1.99453594228967461336... - Vaclav Kotesovec, Dec 21 2017

A013519 Numerator of [x^(2n+1)] in the Taylor expansion tan(cosec(x)-cot(x)).

Original entry on oeis.org

1, 1, 3, 181, 59, 3455, 3332389, 173339393, 449509681, 198232237033, 1032475444411, 101635950910031, 71432133543444211, 671713726985602398481
Offset: 0

Views

Author

Patrick Demichel (patric.demichel(AT)hp.com)

Keywords

Comments

The e.g.f. of x/2, tan(cosec(x)-cot(x)) = x/(2^1*1!) + 4*x^3/(2^3*3!) +72*x^5/(2^5*5!) + 2896*x^7/(2^7*7!) +.. is apparently covered by A003718.

Examples

			x/2 +x^3/12 +3*x^5/160 +181*x^7/40320 +59*x^9/53760 +3455*x^11/12773376 +...
		

Programs

  • Mathematica
    Numerator[Take[CoefficientList[Series[Tan[Csc[x] - Cot[x]], {x, 0, 25}], x], {2, -1, 2}]] (* G. C. Greubel, Nov 12 2016 *)

Extensions

Name edited by R. J. Mathar, Dec 19 2011

A228841 E.g.f.: sec(sec(x)-1) (even-indexed coefficients only).

Original entry on oeis.org

1, 0, 3, 75, 3108, 205125, 19839633, 2643131400, 463873573803, 103710628476075, 28775903316814668, 9702563010998171325, 3907429085273025561153, 1852516229654506870381200, 1021325008815288529961197683, 647900078249178232882473232875
Offset: 0

Views

Author

Geoffrey Critzer, Nov 10 2013

Keywords

Comments

Call a zig permutation a permutation p(1),p(2),...,p(2n) such that p(1)>p(2)< ... > p(2n) Cf. A000364. Consider the set of all set partitions of {1,2,...,2n} into an even number of even sized blocks. a(n) is the number of ways to build a zig permutation on each block and then build a zig permutation on the set formed from a representative (say the smallest element) of each block.

Examples

			a(3) = 75.  There are 15 set partitions of {1,2,3,4,5,6} that have an even number of even sized blocks Cf. A059386.  They all have the same structure: 2/4.  We build a zig permutation on each block in 1*5=5 ways.  For each of these we then build a  zig permutation on a representative from each of the 2 blocks in 1 way.  So 5*1=5 and there are 15 such partitions so 5 *15 =75.
		

Crossrefs

Programs

  • Mathematica
    nn=30;Insert[Select[Range[0,nn]!CoefficientList[Series[Sec[Sec[x]-1],{x,0,nn}],x],#>0&],0,2]
Showing 1-10 of 12 results. Next