cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A005130 Robbins numbers: a(n) = Product_{k=0..n-1} (3k+1)!/(n+k)!; also the number of descending plane partitions whose parts do not exceed n; also the number of n X n alternating sign matrices (ASM's).

Original entry on oeis.org

1, 1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460, 129534272700, 31095744852375, 12611311859677500, 8639383518297652500, 9995541355448167482000, 19529076234661277104897200, 64427185703425689356896743840, 358869201916137601447486156417296
Offset: 0

Views

Author

Keywords

Comments

Also known as the Andrews-Mills-Robbins-Rumsey numbers. - N. J. A. Sloane, May 24 2013
An alternating sign matrix is a matrix of 0's, 1's and -1's such that (a) the sum of each row and column is 1; (b) the nonzero entries in each row and column alternate in sign.
a(n) is odd iff n is a Jacobsthal number (A001045) [Frey and Sellers, 2000]. - Gary W. Adamson, May 27 2009

Examples

			G.f. = 1 + x + 2*x^2 + 7*x^3 + 42*x^4 + 429*x^5 + 7436*x^6 + 218348*x^7 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 71, 557, 573.
  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; A_n on page 4, D_r on page 197.
  • C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, Chapter 75, pp. 385-386.
  • C. A. Pickover, Wonders of Numbers, "Princeton Numbers", Chapter 83, Oxford Univ. Press NY 2001.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=List([0..18],n->Product([0..n-1],k->Factorial(3*k+1)/Factorial(n+k)));; Print(a); # Muniru A Asiru, Jan 02 2019
    
  • Maple
    A005130 := proc(n) local k; mul((3*k+1)!/(n+k)!,k=0..n-1); end;
    # Bill Gosper's approximation (for n>0):
    a_prox := n -> (2^(5/12-2*n^2)*3^(-7/36+1/2*(3*n^2))*exp(1/3*Zeta(1,-1))*Pi^(1/3)) /(n^(5/36)*GAMMA(1/3)^(2/3)); # Peter Luschny, Aug 14 2014
  • Mathematica
    f[n_] := Product[(3k + 1)!/(n + k)!, {k, 0, n - 1}]; Table[ f[n], {n, 0, 17}] (* Robert G. Wilson v, Jul 15 2004 *)
    a[ n_] := If[ n < 0, 0, Product[(3 k + 1)! / (n + k)!, {k, 0, n - 1}]]; (* Michael Somos, May 06 2015 *)
  • PARI
    {a(n) = if( n<0, 0, prod(k=0, n-1, (3*k + 1)! / (n + k)!))}; /* Michael Somos, Aug 30 2003 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = Vec( (1 - (1 - 9*x + O(x^(2*n)))^(1/3)) / (3*x)); matdet( matrix(n, n, i, j, A[i+j-1])) / 3^binomial(n,2))}; /* Michael Somos, Aug 30 2003 */
    
  • Python
    from math import prod, factorial
    def A005130(n): return prod(factorial(3*k+1) for k in range(n))//prod(factorial(n+k) for k in range(n)) # Chai Wah Wu, Feb 02 2022

Formula

a(n) = Product_{k=0..n-1} (3k+1)!/(n+k)!.
The Hankel transform of A025748 is a(n) * 3^binomial(n, 2). - Michael Somos, Aug 30 2003
a(n) = sqrt(A049503).
From Bill Gosper, Mar 11 2014: (Start)
A "Stirling's formula" for this sequence is
a(n) ~ 3^(5/36+(3/2)*n^2)/(2^(1/4+2*n^2)*n^(5/36))*(exp(zeta'(-1))*gamma(2/3)^2/Pi)^(1/3).
which gives results which are very close to the true values:
1.0063254118710128, 2.003523267231662,
7.0056223910285915, 42.01915917750558,
429.12582410098327, 7437.518404899576,
218380.8077275304, 1.085146545456063*^7,
9.119184824937415*^8
(End)
a(n+1) = a(n) * n! * (3*n+1)! / ((2*n)! * (2*n+1)!). - Reinhard Zumkeller, Sep 30 2014; corrected by Eric W. Weisstein, Nov 08 2016
For n>0, a(n) = 3^(n - 1/3) * BarnesG(n+1) * BarnesG(3*n)^(1/3) * Gamma(n)^(1/3) * Gamma(n + 1/3)^(2/3) / (BarnesG(2*n+1) * Gamma(1/3)^(2/3)). - Vaclav Kotesovec, Mar 04 2021

A006366 Number of cyclically symmetric plane partitions in the n-cube; also number of 2n X 2n half-turn symmetric alternating sign matrices divided by number of n X n alternating sign matrices.

Original entry on oeis.org

1, 2, 5, 20, 132, 1452, 26741, 826540, 42939620, 3752922788, 552176360205, 136830327773400, 57125602787130000, 40191587143536420000, 47663133295107416936400, 95288872904963020131203520, 321195665986577042490185260608
Offset: 0

Views

Author

Keywords

Comments

In the 1995 Encyclopedia of Integer Sequences this sequence appears twice, as both M1529 and M1530.

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; Eq. (6.7) on page 198, except the formula given is incorrect. It should be as shown here.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.

Crossrefs

Programs

  • Maple
    A006366 := proc(n) local i, j; mul((3*i - 1)*mul((n + i + j - 1)/(2*i + j - 1), j = i .. n)/(3*i - 2), i = 1 .. n) end;
  • Mathematica
    Table[Product[(3i-1)/(3i-2) Product[(n+i+j-1)/(2i+j-1),{j,i,n}],{i,n}],{n,0,20}] (* Harvey P. Dale, Apr 17 2013 *)
  • PARI
    a(n)=prod(i=0,n-1,(3*i+2)*(3*i)!/(n+i)!)

Formula

a(n) = Product_{i=1..n} (((3*i-1)/(3*i-2))*Product_{j=i..n} (n+i+j-1)/(2*i+j-1)).
a(n) ~ exp(1/36) * GAMMA(1/3)^(4/3) * n^(7/36) * 3^(3*n^2/2 + 11/36) / (A^(1/3) * Pi^(2/3) * 2^(2*n^2 + 7/12)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015

A051055 'Connected' alternating sign n X n matrices, i.e., not made from smaller blocks.

Original entry on oeis.org

0, 1, 0, 1, 2, 59, 1092, 51412, 3420384, 382912420, 68021283668, 19474443244283, 9025228384142396, 6825775070789988992, 8486240219059861120000, 17454179683586670023001218, 59698062960218238908531091872
Offset: 0

Views

Author

Keywords

Comments

A003827 factors out the singleton components only, but many alternating sign matrices can be decomposed into larger pieces.

Examples

			a(4)=2 because of the alternating sign matrices {{0,1,0,0},{1,-1,1,0},{0,1,-1,1},{0,0,1,0}} and {{0,0,1,0},{0,1,-1,1},{1,-1,1,0},{0,1,0,0}}.
		

Crossrefs

Programs

  • Mathematica
    r[n_] = Product[(3k+1)!/(n+k)!, {k, 0, n-1}] ; a[n_] := a[n] = r[n] - (1/n)*Sum[k*Binomial[n, k]^2*r[n-k]*a[k], {k, 0, n-1}]; a[0] = 0; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Aug 01 2011, after Vladeta Jovovic *)

Formula

Sum_{k>=0} a(k)z^k/k!^2 = log(Sum_{k>=0} r(k)z^k/k!^2) where r(k) is the k-th Robbins number A005130(n).
a(n) = r(n) - (1/n)*Sum_{k=0..n-1} k*binomial(n, k)^2*r(n-k)*a(k), n > 0, a(0)=0, where r(k) is the k-th Robbins number A005130(n). - Vladeta Jovovic, Mar 16 2000

Extensions

More terms from Vladeta Jovovic, Mar 16 2000

A173312 Partial sums of A005130.

Original entry on oeis.org

1, 2, 4, 11, 53, 482, 7918, 226266, 11076482, 922911942, 130457184642, 31226202037017, 12642538061714517, 8652026056359367017, 10004193381504526849017, 19539080428042781631746217
Offset: 0

Views

Author

Jonathan Vos Post, Feb 16 2010

Keywords

Comments

Partial sums of Robbins numbers. Partial sums of the number of descending plane partitions whose parts do not exceed n. Partial sums of the number of n X n alternating sign matrices (ASM's). After 2, 11, 53, when is this partial sum again prime, as it is not again prime through a(32)?

Examples

			a(17) = 1 + 1 + 2 + 7 + 42 + 429 + 7436 + 218348 + 10850216 + 911835460 + 129534272700 + 31095744852375 + 12611311859677500 + 8639383518297652500 + 9995541355448167482000 + 19529076234661277104897200 + 64427185703425689356896743840 + 358869201916137601447486156417296.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Product[(3 k + 1)!/(j + k)!, {k, 0, j - 1}], {j, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 26 2017 *)
    Accumulate[Table[Product[(3k+1)!/(n+k)!,{k,0,n-1}],{n,0,20}]] (* Harvey P. Dale, Feb 06 2019 *)

Formula

a(n) = Sum_{i=0..n} A005130(i) = Sum_{i=0..n} Product_{k=0..i-1} (3k+1)!/(i+k)!. [corrected by Vaclav Kotesovec, Oct 26 2017]
a(n) ~ Pi^(1/3) * exp(1/36) * 3^(3*n^2/2 - 7/36) / (A^(1/3) * Gamma(1/3)^(2/3) * n^(5/36) * 2^(2*n^2 - 5/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Oct 26 2017
Showing 1-4 of 4 results.