A004018 Theta series of square lattice (or number of ways of writing n as a sum of 2 squares). Often denoted by r(n) or r_2(n).
1, 4, 4, 0, 4, 8, 0, 0, 4, 4, 8, 0, 0, 8, 0, 0, 4, 8, 4, 0, 8, 0, 0, 0, 0, 12, 8, 0, 0, 8, 0, 0, 4, 0, 8, 0, 4, 8, 0, 0, 8, 8, 0, 0, 0, 8, 0, 0, 0, 4, 12, 0, 8, 8, 0, 0, 0, 0, 8, 0, 0, 8, 0, 0, 4, 16, 0, 0, 8, 0, 0, 0, 4, 8, 8, 0, 0, 0, 0, 0, 8, 4, 8, 0, 0, 16, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 8, 4, 0, 12, 8
Offset: 0
Examples
G.f. = 1 + 4*q + 4*q^2 + 4*q^4 + 8*q^5 + 4*q^8 + 4*q^9 + 8*q^10 + 8*q^13 + 4*q^16 + 8*q^17 + 4*q^18 + 8*q^20 + 12*q^25 + 8*q^26 + ... . - _John Cannon_, Dec 30 2006
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16 (7), r(n).
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
- N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.23).
- E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 15, p. 32, Lemma 2 (with the proof), p. 116, (9.10) first formula.
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 133.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 240, r(n).
- W. König and J. Sprekels, Karl Weierstraß (1815-1897), Springer Spektrum, Wiesbaden, 2016, p. 186-187 and p. 280-281.
- C. D. Olds, A. Lax and G. P. Davidoff, The Geometry of Numbers, Math. Assoc. Amer., 2000, p. 51.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 244-245.
- E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth edition, reprinted, 1958, Cambridge at the University Press.
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- G. E. Andrews, R. Lewis and Z.-G. Liu, An identity relating a theta series to a sum of Lambert series, Bull. London Math. Soc., 33 (2001), 25-31.
- H. H. Chan and C. Krattenthaler, Recent progress in the study of representations of integers as sums of squares, arXiv:math/0407061 [math.NT], 2004.
- S. Cooper and M. Hirschhorn, A combinatorial proof of a result from number theory, Integers 4 (2004), #A09.
- Michael Gilleland, Some Self-Similar Integer Sequences
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62. (This sequence is called rho, see page 6)
- M. D. Hirschhorn, Jacobi's Two-Square Theorem and Related Identities
- M. D. Hirschhorn, Arithmetic Consequences of Jacobi's Two-Squares Theorem
- M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.
- Jacobi-Legendre letters, Correspondance mathématique entre Legendre et Jacobi, J. Reine Angew. Math. 80 (1875) 205-279, letter of September 9, 1828, p. 240-243, formula for 2K/Pi on p. 242.
- Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1505.07229v3 [math.AG], 2015. [Note that a later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication which is next in this list.]
- Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1610.07793 [math.NT], 2016.
- Christian Kassel, Christophe Reutenauer, The Fourier expansion of eta(z)eta(2z)eta(3z)/eta(6z), arXiv:1603.06357 [math.NT], 2016.
- M. Kontsevich and D. Zagier, Periods, Institut des Hautes Etudes Scientifiques 2001 IHES/M/01/22. Published in B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001, pp. 771-808, section 2.3. Example 3.
- Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
- G. Nebe and N. J. A. Sloane, Home page for this lattice
- F. Richman, Counting Gaussian integers in a disk
- Grant Sanderson, Pi hiding in prime regularities, 3Blue1Brown video (2017).
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- Michael Somos, Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers
- Michael Somos, Introduction to Ramanujan theta functions
- G. Villemin, Sommes de 2 carrés
- Eric Weisstein's World of Mathematics, Barnes-Wall Lattice
- Eric Weisstein's World of Mathematics, Moebius Transform
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Eric Weisstein's World of Mathematics, Sum of Squares Function
- Eric Weisstein's World of Mathematics, Theta Series
- Zach Wissner-Gross a.k.a. The Riddler, Riddler Express: Can You Climb Your Way To Victory?, FiveThirtyEight, Sep 24 2021.
- G. Xiao, Two squares
- Index entries for sequences related to sums of squares
- Index entries for sequences mentioned by Glaisher
- Index entries for "core" sequences
Crossrefs
Programs
-
Julia
# JacobiTheta3 is defined in A000122. A004018List(len) = JacobiTheta3(len, 2) A004018List(102) |> println # Peter Luschny, Mar 12 2018
-
Magma
Basis( ModularForms( Gamma1(4), 1), 100) [1]; /* Michael Somos, Jun 10 2014 */
-
Maple
(sum(x^(m^2),m=-10..10))^2; # Alternative: A004018list := proc(len) series(JacobiTheta3(0, x)^2, x, len+1); seq(coeff(%, x, j), j=0..len-1) end: t1 := A004018list(102); r2 := n -> t1[n+1]; # Peter Luschny, Oct 02 2018
-
Mathematica
SquaresR[2,Range[0,110]] (* Harvey P. Dale, Oct 10 2011 *) a[ n_] := SquaresR[ 2, n]; (* Michael Somos, Nov 15 2011 *) a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^2, {q, 0, n}]; (* Michael Somos, Nov 15 2011 *) a[ n_] := With[{m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ EllipticK[ m] / (Pi/2), {q, 0, n}]]; (* Michael Somos, Jun 10 2014 *) a[ n_] := If[ n < 1, Boole[n == 0], 4 Sum[ KroneckerSymbol[-4, d], {d, Divisors@n}]]; (* or *) a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^10/(QPochhammer[ q] QPochhammer[ q^4])^4, {q, 0, n}]; (* Michael Somos, May 17 2015 *)
-
PARI
{a(n) = polcoeff( 1 + 4 * sum( k=1, n, x^k / (1 + x^(2*k)), x * O(x^n)), n)}; /* Michael Somos, Mar 14 2003 */
-
PARI
{a(n) = if( n<1, n==0, 4 * sumdiv( n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Jul 19 2004 */
-
PARI
{a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 1], n)[n])}; /* Michael Somos, May 13 2005 */
-
PARI
a(n)=if(n==0,return(1)); my(f=factor(n)); 4*prod(i=1,#f~, if(f[i,1]%4==1, f[i,2]+1, if(f[i,2]%2 && f[i,1]>2, 0, 1))) \\ Charles R Greathouse IV, Sep 02 2015
-
Python
from sympy import factorint def a(n): if n == 0: return 1 an = 4 for pi, ei in factorint(n).items(): if pi%4 == 1: an *= ei+1 elif pi%4 == 3 and ei%2: return 0 return an print([a(n) for n in range(102)]) # Michael S. Branicky, Sep 24 2021
-
Python
from math import prod from sympy import factorint def A004018(n): return prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in factorint(n).items())<<2 if n else 1 # Chai Wah Wu, Jul 07 2022, corrected Jun 21 2024.
-
Sage
Q = DiagonalQuadraticForm(ZZ, [1]*2) Q.representation_number_list(102) # Peter Luschny, Jun 20 2014
Formula
Expansion of theta_3(q)^2 = (Sum_{n=-oo..+oo} q^(n^2))^2 = Product_{m>=1} (1-q^(2*m))^2 * (1+q^(2*m-1))^4; convolution square of A000122.
Factor n as n = p1^a1 * p2^a2 * ... * q1^b1 * q2^b2 * ... * 2^c, where the p's are primes == 1 (mod 4) and the q's are primes == 3 (mod 4). Then a(n) = 0 if any b is odd, otherwise a(n) = 4*(1 + a1)*(1 + a2)*...
G.f. = s(2)^10/(s(1)^4*s(4)^4), where s(k) := subs(q=q^k, eta(q)) and eta(q) is Dedekind's function, cf. A010815. [Fine]
a(n) = 4*A002654(n), n > 0.
Expansion of eta(q^2)^10 / (eta(q) * eta(q^4))^4 in powers of q. - Michael Somos, Jul 19 2004
Expansion of ( phi(q)^2 + phi(-q)^2 ) / 2 in powers of q^2 where phi() is a Ramanujan theta function.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u - v)^2 - (v - w) * 4 * w. - Michael Somos, Jul 19 2004
Euler transform of period 4 sequence [4, -6, 4, -2, ...]. - Michael Somos, Jul 19 2004
Moebius transform is period 4 sequence [4, 0, -4, 0, ...]. - Michael Somos, Sep 17 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2 (t/i) f(t) where q = exp(2 Pi i t).
The constant sqrt(Pi)/Gamma(3/4)^2 produces the first 324 terms of the sequence when expanded in base exp(Pi), 450 digits of the constant are necessary. - Simon Plouffe, Mar 03 2011
Let s = 16*q*(E1*E4^2/E2^3)^8 where Ek = Product_{n>=1} (1-q^(k*n)) (s=k^2 where k is elliptic k), then the g.f. is hypergeom([+1/2, +1/2], [+1], s) (expansion of 2/Pi*ellipticK(k) in powers of q). - Joerg Arndt, Aug 15 2011
Dirichlet g.f. Sum_{n>=1} a(n)/n^s = 4*zeta(s)*L_(-4)(s), where L is the D.g.f. of the (shifted) A056594. [Raman. J. 7 (2003) 95-127]. - R. J. Mathar, Jul 02 2012
a(n) = floor(1/(n+1)) + 4*floor(cos(Pi*sqrt(n))^2) - 4*floor(cos(Pi*sqrt(n/2))^2) + 8*Sum_{i=1..floor(n/2)} floor(cos(Pi*sqrt(i))^2)*floor(cos(Pi*sqrt(n-i))^2). - Wesley Ivan Hurt, Jan 09 2013
From Wolfdieter Lang, Aug 01 2016: (Start)
A Jacobi identity: theta_3(0, q)^2 = 1 + 4*Sum_{r>=0} (-1)^r*q^(2*r+1)/(1 - q^(2*r+1)). See, e.g., the Grosswald reference (p. 15, p. 116, but p. 32, Lemma 2 with the proof, has the typo r >= 1 instead of r >= 0 in the sum, also in the proof). See the link with the Jacobi-Legendre letter.
Identity used by Weierstraß (see the König-Sprekels book, p. 187, eq. (5.12) and p. 281, with references, but there F(x) from (5.11) on p. 186 should start with nu =1 not 0): theta_3(0, q)^2 = 1 + 4*Sum_{n>=1} q^n/(1 + q^(2*n)). Proof: similar to the one of the preceding Jacobi identity. (End)
a(n) = (4/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017
G.f.: Theta_3(q)^2 = hypergeometric([1/2, 1/2],[1],lambda(q)), with lambda(q) = Sum_{j>=1} A115977(j)*q^j. See the Kontsevich and Zagier link, with Theta -> Theta_3, z -> 2*z and q -> q^2. - Wolfdieter Lang, May 27 2018
Comments