cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004254 a(n) = 5*a(n-1) - a(n-2) for n > 1, a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 5, 24, 115, 551, 2640, 12649, 60605, 290376, 1391275, 6665999, 31938720, 153027601, 733199285, 3512968824, 16831644835, 80645255351, 386394631920, 1851327904249, 8870244889325, 42499896542376, 203629237822555, 975646292570399, 4674602225029440, 22397364832576801
Offset: 0

Views

Author

Keywords

Comments

Nonnegative values of y satisfying x^2 - 21*y^2 = 4; values of x are in A003501. - Wolfdieter Lang, Nov 29 2002
a(n) is equal to the permanent of the (n-1) X (n-1) Hessenberg matrix with 5's along the main diagonal, i's along the superdiagonal and the subdiagonal (i is the imaginary unit), and 0's everywhere else. - John M. Campbell, Jun 09 2011
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,2,3,4}. - Milan Janjic, Jan 25 2015
From Klaus Purath, Jul 26 2024: (Start)
For any three consecutive terms (x, y, z), y^2 - xz = 1 always applies.
a(n) = (t(i+2n) - t(i))/(t(i+n+1) - t(i+n-1)) where (t) is any recurrence t(k) = 4t(k-1) + 4t(k-2) - t(k-3) or t(k) = 5t(k-1) - t(k-2) without regard to initial values.
In particular, if the recurrence (t) of the form (4,4,-1) has the same three initial values as the current sequence, a(n) = t(n) applies.
a(n) = (t(k+1)*t(k+n) - t(k)*t(k+n+1))/(y^2 - xz) where (t) is any recurrence of the current family with signature (5,-1) and (x, y, z) are any three consecutive terms of (t), for integer k >= 0. (End)

Examples

			G.f. = x + 5*x^2 + 24*x^3 + 115*x^4 + 551*x^5 + 2640*x^6 + 12649*x^7 + ...
		

References

  • F. A. Haight, On a generalization of Pythagoras' theorem, pp. 73-77 of J. C. Butcher, editor, A Spectrum of Mathematics. Auckland University Press, 1971.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A004253.
Cf. A000027, A001906, A001353, A003501, A030221. a(n) = sqrt((A003501(n)^2 - 4)/21).
First differences of a(n) are in A004253, partial sums in A089817.
Cf. A004253.
INVERT transformation yields A001109. - R. J. Mathar, Sep 11 2008

Programs

  • Magma
    [ n eq 1 select 0 else n eq 2 select 1 else 5*Self(n-1)-Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 19 2011
  • Maple
    A004254:=1/(1-5*z+z**2); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    a[n_]:=(MatrixPower[{{1,3},{1,4}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    a[ n_] := ChebyshevU[2 n - 1, Sqrt[7]/2] / Sqrt[7]; (* Michael Somos, Jan 22 2017 *)
  • PARI
    {a(n) = subst(4*poltchebi(n+1) - 10*poltchebi(n), x, 5/2) / 21}; /* Michael Somos, Dec 04 2002 */
    
  • PARI
    {a(n) = imag((5 + quadgen(84))^n) / 2^(n-1)}; /* Michael Somos, Dec 04 2002 */
    
  • PARI
    {a(n) = polchebyshev(n - 1, 2, 5/2)}; /* Michael Somos, Jan 22 2017 */
    
  • PARI
    {a(n) = simplify( polchebyshev( 2*n - 1, 2, quadgen(28)/2) / quadgen(28))}; /* Michael Somos, Jan 22 2017 */
    
  • Sage
    [lucas_number1(n,5,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
    

Formula

G.f.: x/(1-5*x+x^2).
a(n) = (((5+sqrt(21))/2)^n-((5-sqrt(21))/2)^n)/sqrt(21). - Barry E. Williams, Aug 29 2000
a(n) = S(2*n-1, sqrt(7))/sqrt(7) = S(n-1, 5); S(n, x)=U(n, x/2), Chebyshev polynomials of 2nd kind, A049310.
A003501(n) = sqrt(21*a(n)^2 + 4).
a(n) = Sum_{k=0..n-1} binomial(n+k, 2*k+1)*2^k. - Paul Barry, Nov 30 2004
[A004253(n), a(n)] = [1,3; 1,4]^n * [1,0]. - Gary W. Adamson, Mar 19 2008
a(n+1) = Sum_{k=0..n} Gegenbauer_C(n-k,k+1,2). - Paul Barry, Apr 21 2009
a(n+1) = Sum_{k=0..n} A101950(n,k)*4^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012: (Start)
Product {n >= 1} (1 + 1/a(n)) = (1/3)*(3 + sqrt(21)).
Product {n >= 2} (1 - 1/a(n)) = (1/10)*(3 + sqrt(21)). (End)
From Michael Somos, Jan 22 2017: (Start)
A054493(2*n - 1) = 7 * a(n)^2 for all n in Z.
a(n) = -a(-n) for all n in Z.
0 = -1 + a(n)*(+a(n) - 5*a(n+1)) + a(n+1)*(+a(n+1)) for all n in Z. (End)
Limit_{n->oo} a(n+1)/a(n) = (5 + sqrt(21))/2 = A107905. - Wolfdieter Lang, Nov 15 2023
From Klaus Purath, Jul 26 2024: (Start)
a(n) = 4(a(n-1) + a(n-2)) - a(n-3).
a(n) = 6(a(n-1) - a(n-2)) + a(n-3).
In general, for all sequences of the form U(n) = P*U(n-1) - U(n-2) the following applies:
U(n) = (P-1)*U(n-1) + (P-1)*U(n-2) - U(n-3).
U(n) = (P+1)*U(n-1) - (P+1)*U(n-2) + U(n-3). (End)
a(n) = (5*a(n-1)+sqrt(21*a(n-1)^2+4))/2 for n>0. - Alexandru Petrescu, Apr 15 2025
From Peter Bala, May 22 2025: (Start)
Product_{n >= 1} ((a(2*n) + 1)/(a(2*n) - 1))^2 = 7/3.
Product_{n >= 1} ((a(2*n+1) + 1)/(a(2*n+1) - 1))^2 = 25/21.
The o.g.f. A(x) satisfies A(x) + A(-x) + 10*A(x)*A(-x) = 0. The o.g.f. for A097778 equals -1/x * A(sqrt(x))*A(-sqrt(x)). (End)
E.g.f.: 2*exp(5*x/2)*sinh(sqrt(21)*x/2)/sqrt(21). - Stefano Spezia, Jul 02 2025