A004320 a(n) = n*(n+1)*(n+2)^2/6.
0, 3, 16, 50, 120, 245, 448, 756, 1200, 1815, 2640, 3718, 5096, 6825, 8960, 11560, 14688, 18411, 22800, 27930, 33880, 40733, 48576, 57500, 67600, 78975, 91728, 105966, 121800, 139345, 158720, 180048, 203456, 229075, 257040, 287490, 320568, 356421, 395200
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Teofil Bogdan and Mircea Dan Rus, Counting the lattice rectangles inside Aztec diamonds and square biscuits, arXiv:2007.13472 [math.CO], 2020.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[n*(n+1)*(n+2)^2/6: n in [0..40] ]; // Vincenzo Librandi, Aug 19 2011
-
Maple
[seq ((n+2)*(binomial(n+2,3)), n=0..45)]; # Zerinvary Lajos, May 26 2006
-
Mathematica
Table[n (n + 1) (n + 2)^2/6, {n, 0, 40}] (* Wesley Ivan Hurt, Oct 28 2014 *) LinearRecurrence[{5,-10,10,-5,1},{0,3,16,50,120,245},40] (* Harvey P. Dale, Nov 09 2022 *)
-
PARI
a(n)=n*(n+1)*(n+2)^2/6 \\ Charles R Greathouse IV, Jun 18 2013
Formula
G.f.: x*(3+x)/(1-x)^5. - Paul Barry, Feb 27 2003
a(n) = (n+2)*A000292(n). - Zerinvary Lajos, May 26 2006
a(n) = A047929(n+2)/6. - Zerinvary Lajos, May 09 2007
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Wesley Ivan Hurt, Oct 28 2014
Sum_{n>=1} 1/a(n) = Pi^2/2 - 9/2. - Jaume Oliver Lafont, Jul 13 2017
a(n-1) = T(n)^2 - (s(n) + s(n-1)), with T(n) = binomial(n+1, 2) = A000217(n) and s(n) = binomial(n+3, 4) = A000332(n+3), for n >= 1. See a comment above, and the formula by Mircea Dan Rus. - Wolfdieter Lang, Sep 22 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/4 + 12*log(2) - 21/2. - Amiram Eldar, Jan 28 2022
E.g.f.: exp(x)*x*(18 + 30*x + 11*x^2 + x^3)/6. - Stefano Spezia, Mar 04 2023
a(n) = Sum_{j=0..n+1} binomial(n+1,2) + binomial(n+1,3). - Detlef Meya, Jan 20 2024
Comments