cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A004431 Numbers that are the sum of 2 distinct nonzero squares.

Original entry on oeis.org

5, 10, 13, 17, 20, 25, 26, 29, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 68, 73, 74, 80, 82, 85, 89, 90, 97, 100, 101, 104, 106, 109, 113, 116, 117, 122, 125, 130, 136, 137, 145, 146, 148, 149, 153, 157, 160, 164, 169, 170, 173, 178, 180, 181, 185, 193, 194, 197
Offset: 1

Views

Author

Keywords

Comments

Numbers whose prime factorization includes at least one prime congruent to 1 mod 4 and any prime factor congruent to 3 mod 4 has even multiplicity. - Franklin T. Adams-Watters, May 03 2006
Reordering of A055096 by increasing values and without repetition. - Paul Curtz, Sep 08 2008
A063725(a(n)) > 1. - Reinhard Zumkeller, Aug 16 2011
The square of these numbers is also the sum of two nonzero squares, so this sequence is a subsequence of A009003. - Jean-Christophe Hervé, Nov 10 2013
Closed under multiplication. Primitive elements are those with exactly one prime factor congruent to 1 mod 4 with multiplicity one (A230779). - Jean-Christophe Hervé, Nov 10 2013
From Bob Selcoe, Mar 23 2016: (Start)
Numbers c such that there is d < c, d >= 1 where c + d and c - d are square. For example, 53 + 28 = 81, 53 - 28 = 25.
Given a prime p == 1 mod 4, a term appears if and only if it is of the form p^i, p*2^j or p*k^2 {i,j,k >= 1}, or a product of any combination of these forms. Therefore, the products of any terms to any powers also are terms. For example, p(1) = 5 and p(2) = 13 so term 45 appears because 5*3^2 = 45 and term 416 appears because 13*2^5 = 416; therefore 45 * 416 = 18720 appears, as does 45^3 * 416^11 = 18720^3 * 416^8.
Numbers of the form j^2 + 2*j*k + 2*k^2 {j,k >= 1}. (End)
Suppose we have a term t = x^2 + y^2. Then s^2*t = (s*x)^2 + (s*y)^2 is a term for any s > 0. Also 2*t = (y+x)^2 + (x-y)^2 is a term. It follows that q*s^2*t is a term for any s > 0 and q=1 or 2. Examples: 2*7^2*26 = 28^2 + 42^2; 6^2*17 = 6^2 + 24^2. - Jerzy R Borysowicz, Aug 11 2017
To find terms up to some upper bound u, we can search for x^2 + y^2 = t where x is odd and y is even. Then we add all numbers of the form 2^m * t <= u and then remove duplicates. - David A. Corneth, Oct 04 2017
From Bernard Schott, Apr 13 2022: (Start)
The 5th comment "Closed under multiplication" can be proved with Brahmagupta's identity: (a^2+b^2) * (c^2+d^2) = (ac + bd)^2 + (ad - bc)^2.
The subsequence of primes is A002144. (End)

Examples

			53 = 7^2 + 2^2, so 53 is in the sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a004431 n = a004431_list !! (n-1)
    a004431_list = findIndices (> 1) a063725_list
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Maple
    isA004431 := proc(n)
        local a,b ;
        for a from 2 do
            if a^2>= n then
                return false;
            end if;
            b := n -a^2 ;
            if b < 1 then
                return false ;
            end if;
            if issqr(b) then
                if ( sqrt(b) <> a ) then
                    return true;
                end if;
            end if;
        end do:
        return false;
    end proc:
    A004431 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            5;
        else
            for a from procname(n-1)+1 do
                if isA004431(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Jan 29 2013
  • Mathematica
    A004431 = {}; Do[a = 2 m * n; b = m^2 - n^2; c = m^2 + n^2; AppendTo[A004431, c], {m, 100}, {n, m - 1}]; Take[Union@A004431, 63] (* Robert G. Wilson v, May 02 2009 *)
    Select[Range@ 200, Length[PowersRepresentations[#, 2, 2] /. {{0, } -> Nothing, {a, b_} /; a == b -> Nothing}] > 0 &] (* Michael De Vlieger, Mar 24 2016 *)
  • PARI
    select( isA004431(n)={n>1 && vecmin((n=factor(n)%4)[,1])==1 && ![f[1]>2 && f[2]%2 | f<-n~]}, [1..199]) \\ M. F. Hasler, Feb 06 2009, updated Nov 24 2019
    
  • PARI
    is(n)=if(n<5, return(0)); my(f=factor(n)%4); if(vecmin(f[, 1])>1, return(0)); for(i=1, #f[, 1], if(f[i, 1]==3 && f[i, 2]%2, return(0))); 1
    for(n=1, 1e3, if(is(n), print1(n, ", "))) \\ Altug Alkan, Dec 06 2015
    
  • PARI
    upto(n) = {my(res = List(), s); forstep(i=1, sqrtint(n), 2, forstep(j = 2, sqrtint(n - i^2), 2, listput(res, i^2 + j^2))); s = #res; for(i = 1, s, t = res[i]; for(e = 1, logint(n \ res[i], 2), listput(res, t<<=1))); listsort(res, 1); res} \\ David A. Corneth, Oct 04 2017
    
  • Python
    def aupto(limit):
      s = [i*i for i in range(1, int(limit**.5)+2) if i*i < limit]
      s2 = set(a+b for i, a in enumerate(s) for b in s[i+1:] if a+b <= limit)
      return sorted(s2)
    print(aupto(197)) # Michael S. Branicky, May 10 2021

A025441 Number of partitions of n into 2 distinct nonzero squares.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A060306 gives records; A052199 gives where records occur.
Column k=2 of A341040.
Cf. A004439 (a(n)=0), A025302 (a(n)=1), A025303 (a(n)=2), A025304 (a(n)=3), A025305 (a(n)=4), A025306 (a(n)=5), A025307 (a(n)=6), A025308 (a(n)=7), A025309 (a(n)=8), A025310 (a(n)=9), A025311 (a(n)=10), A004431 (a(n)>0).

Programs

  • Haskell
    a025441 n = sum $ map (a010052 . (n -)) $
                          takeWhile (< n `div` 2) $ tail a000290_list
    -- Reinhard Zumkeller, Dec 20 2013
    
  • Mathematica
    Table[Count[PowersRepresentations[n, 2, 2], pr_ /; Unequal @@ pr && FreeQ[pr, 0]], {n, 0, 107}] (* Jean-François Alcover, Mar 01 2019 *)
  • PARI
    a(n)=if(n>4,sum(k=1,sqrtint((n-1)\2),issquare(n-k^2)),0) \\ Charles R Greathouse IV, Jun 10 2016
    
  • PARI
    a(n)=if(n<5,return(0)); my(v=valuation(n, 2), f=factor(n>>v), t=1); for(i=1, #f[, 1], if(f[i, 1]%4==1, t*=f[i, 2]+1, if(f[i, 2]%2, return(0)))); if(t%2, t-(-1)^v, t)/2-issquare(n/2) \\ Charles R Greathouse IV, Jun 10 2016
    
  • Python
    from math import prod
    from sympy import factorint
    def A025441(n):
        f = factorint(n).items()
        return -int(not (any((e-1 if p == 2 else e)&1 for p,e in f) or n&1)) + (((m:=prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in f))+((((~n & n-1).bit_length()&1)<<1)-1 if m&1 else 0))>>1) if n else 0 # Chai Wah Wu, Sep 08 2022

Formula

a(A025302(n)) = 1. - Reinhard Zumkeller, Dec 20 2013
a(n) = Sum_{ m: m^2|n } A157228(n/m^2). - Andrey Zabolotskiy, May 07 2018
a(n) = [x^n y^2] Product_{k>=1} (1 + y*x^(k^2)). - Ilya Gutkovskiy, Apr 22 2019
a(n) = Sum_{i=1..floor((n-1)/2)} c(i) * c(n-i), where c is the square characteristic (A010052). - Wesley Ivan Hurt, Nov 26 2020
a(n) = A000161(n) - A093709(n). - Andrey Zabolotskiy, Apr 12 2022

A162592 Hypotenuse numbers A009003 which cannot be represented as sum of 2 distinct nonzero squares.

Original entry on oeis.org

15, 30, 35, 39, 51, 55, 60, 70, 75, 78, 87, 91, 95, 102, 105, 110, 111, 115, 119, 120, 123, 135, 140, 143, 150, 155, 156, 159, 165, 174, 175, 182, 183, 187, 190, 195, 203, 204, 210, 215, 219, 220, 222, 230, 235, 238, 240, 246, 247, 255, 259, 267, 270, 273, 275
Offset: 1

Views

Author

Keywords

Comments

Numbers with both at least one prime factor of form 4k+1 (which makes the square decomposable into the sum of two squares), and with at least one prime factor of form 4k+3 to an odd multiplicity (which makes the number itself not decomposable). This is a direct consequence of Fermat's Christmas theorem on the sum of two squares (Fermat announced its proof - without giving it - in a letter to Mersenne dated December 25, 1640). - Jean-Christophe Hervé, Nov 19 2013
Numbers n such that n^2 is the sum of two nonzero squares while n is not. Also note that sequence is equivalent to "Hypotenuse numbers A009003 which cannot be represented as sum of 2 nonzero squares." The reason is, if n is the sum of two nonzero squares in exactly one way and n = a^2 + a^2, then n^2 cannot be the sum of two nonzero squares. - Altug Alkan, Apr 14 2016

Examples

			13 is hypotenuse number A009003(3) but can be represented as A004431(3), so 13 is not in this sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Module[{k=1},While[(n-k^2)^(1/2)!=IntegerPart[(n-k^2)^(1/2)],k++; If[2*k^2>=n,k=0;Break[]]];k]; lst1={};Do[If[f[n^2]>0,AppendTo[lst1, n]],{n,3,5!}];lst1 (*A009003 Hypotenuse numbers (squares are sums of 2 distinct nonzero squares).*) lst2={};Do[If[f[n]>0,AppendTo[lst2, n]],{n,3,5!}];lst2 (*A004431 Numbers that are the sum of 2 distinct nonzero squares.*) Complement[lst1,lst2]

Formula

Extensions

Formulas added, entries checked by R. J. Mathar, Aug 14 2009
Showing 1-3 of 3 results.