A270835 a(n) = smallest k such that A004431(n) +/- k are both positive squares.
4, 6, 12, 8, 16, 24, 10, 20, 30, 12, 24, 40, 36, 14, 48, 28, 42, 60, 16, 32, 48, 70, 64, 18, 36, 80, 54, 72, 96, 20, 40, 90, 60, 112, 80, 108, 22, 44, 66, 120, 88, 24, 110, 48, 140, 72, 132, 96, 160, 120, 26, 52, 78, 144, 180
Offset: 1
Keywords
Examples
a(11)=24 because A004431(11) = 40; 40+24 = 8^2 and 40-24 = 4^2.
Programs
-
Mathematica
nn = 80; s = Select[Range[4 nn], Length[PowersRepresentations[#, 2, 2] /. {{0, } -> Nothing, {a, b_} /; a == b -> Nothing}] > 0 &]; Table[SelectFirst[Range[10 nn], And[IntegerQ@ Sqrt[s[[n]] + #], IntegerQ@ Sqrt[s[[n]] - #]] &], {n, nn}] (* Michael De Vlieger, Mar 24 2016, Version 10 *)
-
PARI
issum(n)=if(n<5, return(0)); my(f=factor(n)%4); if(vecmin(f[, 1])>1, return(0)); for(i=1, #f[, 1], if(f[i, 1]==3 && f[i, 2]%2, return(0))); 1; \\ after A004431 findk(n) = {for (k=1, n, if (issquare(n+k) && issquare(n-k), return (k)););} lista(nn) = {for (n=1, nn, if (issum(n), print1(findk(n), ", ");););} \\ Michel Marcus, Mar 31 2016
Comments