A004652 Expansion of x*(1+x^2+x^4)/((1-x)*(1-x^2)*(1-x^3)).
0, 1, 1, 3, 4, 7, 9, 13, 16, 21, 25, 31, 36, 43, 49, 57, 64, 73, 81, 91, 100, 111, 121, 133, 144, 157, 169, 183, 196, 211, 225, 241, 256, 273, 289, 307, 324, 343, 361, 381, 400, 421, 441, 463, 484, 507, 529, 553, 576, 601, 625, 651, 676, 703, 729, 757, 784, 813
Offset: 0
Examples
From _Gary W. Adamson_, May 14 2010: (Start) First few rows of the generating triangle = 1; 2, 1; 3, 0, 1; 4, 0, 2, 1; 5, 0, 3, 0, 1; 6, 0, 4, 0, 2, 1; 7, 0, 5, 0, 3, 0, 1; 8, 0, 6, 0, 4, 0, 2, 1; ... Example: a(7) = 13 = (6 + 0 + 4 + 0 + 2 + 1). (End) x + x^2 + 3*x^3 + 4*x^4 + 7*x^5 + 9*x^6 + 13*x^7 + 16*x^8 + 21*x^9 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- A. R. Calderbank and N. J. A. Sloane, Double circulant codes over Z_4, J. Algeb. Combin., 6 (1997) 119-131 (Abstract, pdf, ps).
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- J. E. Strapasson, S. I. R. Costa, and M. M. S. Alves, On Genus of Circulant Graphs, arXiv:1004.0244 [math.GN], 2010-2016. - _Jonathan Vos Post_, Apr 05 2010
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Eric Weisstein's World of Mathematics, Graph Genus
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
Haskell
a004652 = ceiling . (/ 4) . fromIntegral . (^ 2) a004652_list = 0 : 1 : zipWith (+) a004652_list [1..] -- Reinhard Zumkeller, Dec 18 2013
-
Magma
[Ceiling(n^2/4): n in [0..60] ]; // Vincenzo Librandi, Aug 19 2011
-
Maple
with(combstruct):ZL:=[st,{st=Prod(left,right),left=Set(U,card=r),right=Set(U,card
=2)}, unlabeled]: subs(r=1,stack): seq(count(subs(r=2,ZL),size=m+3),m=0..57) ; # Zerinvary Lajos, Mar 09 2007 -
Mathematica
CoefficientList[Series[x (1 - x + x^2)/((1 - x)^2*(1 - x^2)), {x, 0, 57}], x] (* Michael De Vlieger, Oct 03 2016 *) Table[Ceiling[n^2/4], {n, 0, 20}] (* Eric W. Weisstein, Jan 19 2018 *) Ceiling[Range[0, 20]^2/4] (* Eric W. Weisstein, Jan 19 2018 *) LinearRecurrence[{2, 0, -2, 1}, {1, 1, 3, 4}, {0, 20}] (* Eric W. Weisstein, Jan 19 2018 *)
-
PARI
{a(n) = ceil(n^2 / 4)}
Formula
a(n) = ceiling(n^2/4).
a(-n) = a(n).
G.f.: x * (1 - x + x^2) / ((1 - x)^2 * (1 - x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) + 1. a(2*n) = n^2, a(2*n-1) = n^2 - n + 1. - Michael Somos, Apr 21 2000
Interleaves square numbers with centered polygonal numbers: a(2*n)=A000290(n), a(2*n+1)=A002061(n+1). - Paul Barry, Mar 13 2003
For n > 1: a(n) is the digit reversal of n in base A008619(n), where a(n) is written in base 10. - Naohiro Nomoto, Mar 15 2004
a(n) = a(n-2) + n - 1. - Paul Barry, Jul 14 2004
Euler transform of length 6 sequence [ 1, 2, 1, 0, 0, -1]. - Michael Somos, Apr 03 2007
Starting (1, 3, 4, 7, 9, 13, ...), row sums of triangle A135840. - Gary W. Adamson, Dec 01 2007
a(n) = (3/8)*(-1)^(n+1) + 5/8 - (3/4)*(n+1) + (1/4)*(n+2)*(n+1). - Richard Choulet, Nov 27 2008
a(n) = n^2/4 - 3*((-1)^n-1)/8. - Omar E. Pol, Sep 28 2011
a(n) = -n + floor( (n+1)(n+3)/4 ). - Wesley Ivan Hurt, Jun 23 2013
E.g.f.: (x*(x + 1)*exp(x) + 3*sinh(x))/4. - Ilya Gutkovskiy, Oct 03 2016
a(n) = binomial(floor((n+3)/2),2) + binomial(floor((n+(-1)^n)/2),2). - Yuchun Ji, Feb 03 2021
Comments