A005044 Alcuin's sequence: expansion of x^3/((1-x^2)*(1-x^3)*(1-x^4)).
0, 0, 0, 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 14, 19, 16, 21, 19, 24, 21, 27, 24, 30, 27, 33, 30, 37, 33, 40, 37, 44, 40, 48, 44, 52, 48, 56, 52, 61, 56, 65, 61, 70, 65, 75, 70, 80, 75, 85, 80, 91, 85, 96, 91, 102, 96, 108, 102, 114, 108, 120
Offset: 0
Examples
There are 4 triangles of perimeter 11, with sides 1,5,5; 2,4,5; 3,3,5; 3,4,4. So a(11) = 4. G.f. = x^3 + x^5 + x^6 + 2*x^7 + x^8 + 3*x^9 + 2*x^10 + 4*x^11 + 3*x^12 + ... From _John M. Campbell_, Jan 29 2016: (Start) Letting n = 15, there are a(n)=7 partitions mu |- 15 of length 3 such that mu_1-mu_2 is even and mu_2-mu_3 is even: (13,1,1) |- 15 (11,3,1) |- 15 (9,5,1) |- 15 (9,3,3) |- 15 (7,7,1) |- 15 (7,5,3) |- 15 (5,5,5) |- 15 (End)
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 7.
- I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. Wiley, NY, Chap.10, Section 10.2, Problems 5 and 6, pp. 451-2.
- D. Olivastro: Ancient Puzzles. Classic Brainteasers and Other Timeless Mathematical Games of the Last 10 Centuries. New York: Bantam Books, 1993. See p. 158.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 8, #30 (First published: San Francisco: Holden-Day, Inc., 1964)
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- Alcuin of York, Propositiones ad acuendos juvenes, [Latin with English translation] - see Problem 12.
- G. E. Andrews, A note on partitions and triangles with integer sides, Amer. Math. Monthly, 86 (1979), 477-478.
- G. E. Andrews, MacMahon's Partition Analysis II: Fundamental Theorems, Annals Combinatorics, 4 (2000), 327-338.
- G. E. Andrews, P. Paule and A. Riese, MacMahon's Partition Analysis IX: k-gon partitions, Bull. Austral Math. Soc., 64 (2001), 321-329.
- G. E. Andrews, P. Paule and A. Riese, MacMahon's partition analysis III. The Omega package, p. 19.
- Donald J. Bindner and Martin Erickson, Alcuin's Sequence, Amer. Math. Monthly, 119, February 2012, pp. 115-121.
- P. Bürgisser and C. Ikenmeyer, Fundamental invariants of orbit closures, arXiv preprint arXiv:1511.02927 [math.AG], 2015. See Section 5.5.
- James East and Ron Niles, Integer polygons of given perimeter, Bull. Aust. Math. Soc. 100 (2019), no. 1, 131-147.
- James East and Ron Niles, Integer Triangles of Given Perimeter: A New Approach via Group Theory., Amer. Math. Monthly 126 (2019), no. 8, 735-739.
- Wulf-Dieter Geyer, Lecture on history of medieval mathematics [broken link]
- M. D. Hirschhorn, Triangles With Integer Sides
- M. D. Hirschhorn, Triangles With Integer Sides, Revisited
- R. Honsberger, Mathematical Gems III, Math. Assoc. Amer., 1985, p. 39. [Annotated scanned copy]
- T. Jenkyns and E. Muller, Triangular triples from ceilings to floors, Amer. Math. Monthly, 107 (Aug. 2000), 634-639.
- J. H. Jordan, R. Walch and R. J. Wisner, Triangles with integer sides, Amer. Math. Monthly, 86 (1979), 686-689.
- Hermann Kremer, Posting to de.sci.mathematik (1), (2), and (3). [Dead links]
- Hermann Kremer, Posting to alt.math.recreational, June 2004.
- N. Krier and B. Manvel, Counting integer triangles, Math. Mag., 71 (1998), 291-295.
- Mathforum, Triangle Perimeters
- Augustine O. Munagi, Computation of q-partial fractions, INTEGERS: Electronic Journal Of Combinatorial Number Theory, 7 (2007), #A25.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- S. A. Shirali, Case Studies in Experimental Mathematics, 2013.
- David Singmaster, Triangles with Integer Sides and Sharing Barrels, College Math J, 21:4 (1990) 278-285.
- James Tanton, Young students approach integer triangles, FOCUS 22 no. 5 (2002), 4 - 6.
- James Tanton, Integer Triangles, Chapter 11 in "Mathematics Galore!" (MAA, 2012).
- Eric Weisstein's World of Mathematics, Alcuin's Sequence, Integer Triangle, and Triangle.
- Wikipedia, Propositiones ad acuendos juvenes.
- R. G. Wilson v, Letter to N. J. A. Sloane, date unknown.
- Index entries for two-way infinite sequences
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,-1,-1,-1,0,1).
Crossrefs
See A266755 for a version without the three leading zeros.
Both bisections give (essentially) A001399.
Programs
-
Haskell
a005044 = p [2,3,4] . (subtract 3) where p _ 0 = 1 p [] _ = 0 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m -- Reinhard Zumkeller, Feb 28 2013
-
Maple
A005044 := n-> floor((1/48)*(n^2+3*n+21+(-1)^(n-1)*3*n)): seq(A005044(n), n=0..73); A005044 := -1/(z**2+1)/(z**2+z+1)/(z+1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation
-
Mathematica
a[n_] := Round[If[EvenQ[n], n^2, (n + 3)^2]/48] (* Peter Bertok, Jan 09 2002 *) CoefficientList[Series[x^3/((1 - x^2)*(1 - x^3)*(1 - x^4)), {x, 0, 105}], x] (* Robert G. Wilson v, Jun 02 2004 *) me[n_] := Module[{i, j, sum = 0}, For[i = Ceiling[(n - 3)/3], i <= Floor[(n - 3)/2], i = i + 1, For[j = Ceiling[(n - i - 3)/2], j <= i, j = j + 1, sum = sum + 1] ]; Return[sum]; ] mine = Table[me[n], {n, 1, 11}]; (* Srikanth (sriperso(AT)gmail.com), Aug 02 2008 *) LinearRecurrence[{0,1,1,1,-1,-1,-1,0,1},{0,0,0,1,0,1,1,2,1},80] (* Harvey P. Dale, Sep 22 2014 *) Table[Length@Select[IntegerPartitions[n, {3}], Max[#]*180 < 90 n &], {n, 1, 100}] (* Frank M Jackson, Nov 04 2022 *)
-
PARI
a(n) = round(n^2 / 12) - (n\2)^2 \ 4
-
PARI
a(n) = (n^2 + 6*n * (n%2) + 24) \ 48
-
PARI
a(n)=if(n%2,n+3,n)^2\/48 \\ Charles R Greathouse IV, May 02 2016
-
PARI
concat(vector(3), Vec((x^3)/((1-x^2)*(1-x^3)*(1-x^4)) + O(x^70))) \\ Felix Fröhlich, Jun 07 2017
Formula
For odd indices we have a(2*n-3) = a(2*n). For even indices, a(2*n) = nearest integer to n^2/12 = A001399(n).
For all n, a(n) = round(n^2/12) - floor(n/4)*floor((n+2)/4) = a(-3-n) = A069905(n) - A002265(n)*A002265(n+2).
For n = 0..11 (mod 12), a(n) is respectively n^2/48, (n^2 + 6*n - 7)/48, (n^2 - 4)/48, (n^2 + 6*n + 21)/48, (n^2 - 16)/48, (n^2 + 6*n - 7)/48, (n^2 + 12)/48, (n^2 + 6*n + 5)/48, (n^2 - 16)/48, (n^2 + 6*n + 9)/48, (n^2 - 4)/48, (n^2 + 6*n + 5)/48.
Euler transform of length 4 sequence [ 0, 1, 1, 1]. - Michael Somos, Sep 04 2006
a(-3 - n) = a(n). - Michael Somos, Sep 04 2006
a(n) = sum(ceiling((n-3)/3) <= i <= floor((n-3)/2), sum(ceiling((n-i-3)/2) <= j <= i, 1 ) ) for n >= 1. - Srikanth K S, Aug 02 2008
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n >= 9. - David Neil McGrath, Aug 30 2014
a(n+3) = a(n) if n is odd; a(n+3) = a(n) + floor(n/4) + 1 if n is even. Sketch of proof: There is an obvious injective map from perimeter-n triangles to perimeter-(n+3) triangles defined by f(a,b,c) = (a+1,b+1,c+1). It is easy to show f is surjective for odd n, while for n=2k the image of f is only missing the triangles (a,k+2-a,k+1) for 1 <= a <= floor(k/2)+1. - James East, May 01 2016
a(n) = round(n^2/48) if n is even; a(n) = round((n+3)^2/48) if n is odd. - James East, May 01 2016
a(n) = (6*n^2 + 18*n - 9*(-1)^n*(2*n + 3) - 36*sin(Pi*n/2) - 36*cos(Pi*n/2) + 64*cos(2*Pi*n/3) - 1)/288. - Ilya Gutkovskiy, May 01 2016
a(n) = A325691(n-3) + A000035(n) for n>=3. The bijection between partition(n,[2,3,4]) and not-over-half partition(n,3,n/2) + partition(n,2,n/2) can be built by a Ferrers(part)[0+3,1,2] map. And the last partition(n,2,n/2) is unique [n/2,n/2] if n is even, it is given by A000035. - Yuchun Ji, Sep 24 2020
a(4n+3) = a(4n) + n+1, a(4n+4) = a(4n+1) = A000212(n+1), a(4n+5) = a(4n+2) + n+1, a(4n+6) = a(4n+3) = A007980(n). - Yuchun Ji, Oct 10 2020
a(n)-a(n-4) = A008615(n-1). - R. J. Mathar, Jun 23 2021
a(n)-a(n-2) = A008679(n-3). - R. J. Mathar, Jun 23 2021
Extensions
Additional comments from Reinhard Zumkeller, May 11 2002
Yaglom reference and mod formulas from Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), May 27 2000
The reference to Alcuin of York (735-804) was provided by Hermann Kremer (hermann.kremer(AT)onlinehome.de), Jun 18 2004
Comments