cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A081250 Numbers k such that A081249(m)/m^2 has a local minimum for m = k.

Original entry on oeis.org

1, 3, 11, 33, 101, 303, 911, 2733, 8201, 24603, 73811, 221433, 664301, 1992903, 5978711, 17936133, 53808401, 161425203, 484275611, 1452826833, 4358480501, 13075441503, 39226324511, 117678973533, 353036920601, 1059110761803
Offset: 0

Views

Author

Klaus Brockhaus, Mar 17 2003

Keywords

Comments

The limit of the local minima, lim_{n->infinity} A081249(n)/n^2 = 1/10. For local maxima cf. A081251.

Examples

			11 is a term since A081249(10)/10^2 = 11/100 = 0.110, A081249(11)/11^2 = 13/121 = 0.107, A081249(12)/12^2 = 16/144 = 0.111.
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> (5*3^n +(-1)^n -2)/4); # G. C. Greubel, Jul 14 2019
  • Magma
    [Floor(3^n*5/4): n in [0..30]]; // Vincenzo Librandi, Jun 10 2011
    
  • Maple
    a[0]:=1:a[1]:=3:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]+2 od: seq(a[n], n=0..30); # Zerinvary Lajos, Apr 28 2008
  • Mathematica
    Floor[5*3^Range[0, 30]/4] (* Wesley Ivan Hurt, Mar 30 2017 *)
  • PARI
    vector(30, n, n--; (5*3^n +(-1)^n -2)/4) \\ G. C. Greubel, Jul 14 2019
    
  • Sage
    [(5*3^n +(-1)^n -2)/4 for n in (0..30)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = floor(3^n*5/4).
G.f.: x*(1+x^2)/((1-x)*(1+x)*(1-3*x)).
a(n) = 3*a(n-1) + 1*a(n-2) - 3*a(n-3).
a(n) = (5*3^n + (-1)^n - 2)/4. - Paul Barry, May 19 2003
a(n) = a(n-2) + 10*3^(n-2) for n > 1.
a(n+2) - a(n) = A005052(n).
a(2*n) = Sum_{j=1..n+1} A062107(2*j).
a(2*n+1) = Sum_{j=1..n+1} A062107(2*j+1).
With a leading 0, this is a(n) = (5*3^n - 6 + 4*0^n - 3*(-1)^n)/12, the binomial transform of A084183. - Paul Barry, May 19 2003
Convolution of 3^n and {1, 0, 2, 0, 2, 0, ...}. a(n) = Sum_{k=0..n} ((1 + (-1)^k) - 0^k)*3^(n-k) = Sum_{k=0..n} ((1 + (-1)^(n-k)) - 0^(n-k))3^k. - Paul Barry, Jul 19 2004
a(n) = 2*a(n-1) + 3*a(n-2) + 2, a(0)=1, a(1)=3. - Zerinvary Lajos, Apr 28 2008

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Jun 10 2011

A062107 Diagonal of table A062104.

Original entry on oeis.org

0, 1, 3, 10, 30, 90, 270, 810, 2430, 7290, 21870, 65610, 196830, 590490, 1771470, 5314410, 15943230, 47829690, 143489070, 430467210, 1291401630, 3874204890, 11622614670, 34867844010, 104603532030, 313810596090, 941431788270
Offset: 1

Views

Author

Antti Karttunen, May 30 2001

Keywords

Crossrefs

Except for initial terms, same as A005052.

Programs

  • Maple
    [seq(ChessPawnTriangle(j,j),j=1..50)];

Formula

a(n) = 10*3^(n-4) for n >= 4.
From Paul Barry, Oct 15 2004: (Start)
G.f.: x^2(1+x^2)/(1-3x);
a(n) = Sum_{k=0..n-2} 3^(n-k-2)binomial(1, k/2)(1+(-1)^k)/2. (End)

A258597 a(n) = 13*3^n.

Original entry on oeis.org

13, 39, 117, 351, 1053, 3159, 9477, 28431, 85293, 255879, 767637, 2302911, 6908733, 20726199, 62178597, 186535791, 559607373, 1678822119, 5036466357, 15109399071, 45328197213, 135984591639, 407953774917, 1223861324751, 3671583974253, 11014751922759
Offset: 0

Views

Author

Vincenzo Librandi, Jun 05 2015

Keywords

Comments

Also maximum leaf number of the (n+3)-Apollonian network for n >= 0. - Eric W. Weisstein, Jan 17 2018

Crossrefs

Cf. k*3^n: A000244 (k=1,3,9), A008776 (k=2,6), A003946 (k=4), A005030 (k=5), A005032 (k=7), A005051 (k=8), A005052 (k=10), A120354 (k=11), A003946 (k=12), this sequence (k=13), A258598 (k=17), A176413 (k=19).

Programs

  • Magma
    [13*3^n: n in [0..30]];
  • Mathematica
    Table[13 3^n, {n, 0, 30}]
    13 3^Range[0, 20] (* Eric W. Weisstein, Jan 17 2018 *)
    LinearRecurrence[{3}, {13}, 20] (* Eric W. Weisstein, Jan 17 2018 *)
    CoefficientList[Series[13/(1 - 3 x), {x, 0, 20}], x] (* Eric W. Weisstein, Jan 17 2018 *)

Formula

G.f.: 13/(1-3*x).
a(n) = 3*a(n-1).
a(n) = 13*A000244(n).
E.g.f.: 13*exp(3*x). - Elmo R. Oliveira, Aug 16 2024
Showing 1-3 of 3 results.