cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A081250 Numbers k such that A081249(m)/m^2 has a local minimum for m = k.

Original entry on oeis.org

1, 3, 11, 33, 101, 303, 911, 2733, 8201, 24603, 73811, 221433, 664301, 1992903, 5978711, 17936133, 53808401, 161425203, 484275611, 1452826833, 4358480501, 13075441503, 39226324511, 117678973533, 353036920601, 1059110761803
Offset: 0

Views

Author

Klaus Brockhaus, Mar 17 2003

Keywords

Comments

The limit of the local minima, lim_{n->infinity} A081249(n)/n^2 = 1/10. For local maxima cf. A081251.

Examples

			11 is a term since A081249(10)/10^2 = 11/100 = 0.110, A081249(11)/11^2 = 13/121 = 0.107, A081249(12)/12^2 = 16/144 = 0.111.
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> (5*3^n +(-1)^n -2)/4); # G. C. Greubel, Jul 14 2019
  • Magma
    [Floor(3^n*5/4): n in [0..30]]; // Vincenzo Librandi, Jun 10 2011
    
  • Maple
    a[0]:=1:a[1]:=3:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]+2 od: seq(a[n], n=0..30); # Zerinvary Lajos, Apr 28 2008
  • Mathematica
    Floor[5*3^Range[0, 30]/4] (* Wesley Ivan Hurt, Mar 30 2017 *)
  • PARI
    vector(30, n, n--; (5*3^n +(-1)^n -2)/4) \\ G. C. Greubel, Jul 14 2019
    
  • Sage
    [(5*3^n +(-1)^n -2)/4 for n in (0..30)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = floor(3^n*5/4).
G.f.: x*(1+x^2)/((1-x)*(1+x)*(1-3*x)).
a(n) = 3*a(n-1) + 1*a(n-2) - 3*a(n-3).
a(n) = (5*3^n + (-1)^n - 2)/4. - Paul Barry, May 19 2003
a(n) = a(n-2) + 10*3^(n-2) for n > 1.
a(n+2) - a(n) = A005052(n).
a(2*n) = Sum_{j=1..n+1} A062107(2*j).
a(2*n+1) = Sum_{j=1..n+1} A062107(2*j+1).
With a leading 0, this is a(n) = (5*3^n - 6 + 4*0^n - 3*(-1)^n)/12, the binomial transform of A084183. - Paul Barry, May 19 2003
Convolution of 3^n and {1, 0, 2, 0, 2, 0, ...}. a(n) = Sum_{k=0..n} ((1 + (-1)^k) - 0^k)*3^(n-k) = Sum_{k=0..n} ((1 + (-1)^(n-k)) - 0^(n-k))3^k. - Paul Barry, Jul 19 2004
a(n) = 2*a(n-1) + 3*a(n-2) + 2, a(0)=1, a(1)=3. - Zerinvary Lajos, Apr 28 2008

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Jun 10 2011

A005052 a(n) = 10*3^n.

Original entry on oeis.org

10, 30, 90, 270, 810, 2430, 7290, 21870, 65610, 196830, 590490, 1771470, 5314410, 15943230, 47829690, 143489070, 430467210, 1291401630, 3874204890, 11622614670, 34867844010, 104603532030, 313810596090, 941431788270, 2824295364810, 8472886094430
Offset: 0

Views

Author

Keywords

Crossrefs

Except for initial terms, same as A062107.

Programs

Formula

From Elmo R. Oliveira, Aug 14 2024: (Start)
G.f.: 10/(1-3*x).
E.g.f.: 10*exp(3*x).
a(n) = 3*a(n-1), n > 0. (End)

A062104 Square array read by antidiagonals: number of ways a black pawn (starting at any square on the second rank) can (theoretically) end at various squares on an infinite chessboard.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 6, 0, 1, 3, 9, 15, 0, 1, 3, 10, 25, 40, 0, 1, 3, 10, 29, 69, 109, 0, 1, 3, 10, 30, 84, 193, 302, 0, 1, 3, 10, 30, 89, 242, 544, 846, 0, 1, 3, 10, 30, 90, 263, 698, 1544, 2390, 0, 1, 3, 10, 30, 90, 269, 774, 2016, 4406, 6796, 0, 1, 3, 10, 30, 90, 270
Offset: 0

Views

Author

Antti Karttunen, May 30 2001

Keywords

Comments

Table formatted as a square array shows the top-left corner of the infinite board.

Examples

			Array begins:
0       0       0       0       0       0       0       0       0       0       0       0 ...
1       1       1       1       1       1       1       1       1       1       1 ...
2       3       3       3       3       3       3       3       3       3 ...
6       9       10      10      10      10      10      10      10 ...
15      25      29      30      30      30      30      30 ...
40      69      84      89      90      90      90 ...
109     193     242     263     269     270 ...
302     544     698     774 ...
846     1544    2016 ...
2390    4406 ...
6796 ...
		

Crossrefs

A062106 gives the left column and A062107 the diagonal of the table. A062105 is a more regular variant. Cf. also A062103. Trinv given at A054425.

Programs

  • Maple
    [seq(CPTSeq(j),j=0..91)]; CPTSeq := n -> ChessPawnTriangle( (1+(n-((trinv(n)*(trinv(n)-1))/2))), ((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1) );
    ChessPawnTriangle := proc(r,c) option remember; if(r < 2) then RETURN(0); fi; if(c < 1) then RETURN(0); fi; if(2 = r) then RETURN(1); fi; if(4 = r) then RETURN(1+ChessPawnTriangle(r-1,c-1)+ChessPawnTriangle(r-1,c)+ChessPawnTriangle(r-1,c+1));
    else RETURN(ChessPawnTriangle(r-1,c-1)+ChessPawnTriangle(r-1,c)+ChessPawnTriangle(r-1,c+1)); fi; end;
  • Mathematica
    trinv[n_] := Floor[(1 + Sqrt[8 n + 1])/2];
    CPTSeq[n_] := ChessPawnTriangle[(1 + (n - ((trinv[n]*(trinv[n] - 1))/2))), ((((trinv[n] - 1)*(((1/2)*trinv[n]) + 1)) - n) + 1)];
    ChessPawnTriangle[r_, c_] := ChessPawnTriangle[r, c] = Which[r < 2, 0, c < 1, 0, 2 == r, 1, 4 == r, 1 + ChessPawnTriangle[r - 1, c - 1] + ChessPawnTriangle[r - 1, c] + ChessPawnTriangle[r - 1, c + 1], True, ChessPawnTriangle[r - 1, c - 1] + ChessPawnTriangle[r - 1, c] + ChessPawnTriangle[r - 1, c + 1]];
    Table[CPTSeq[j], {j, 0, 91}] (* Jean-François Alcover, Mar 06 2016, adapted from Maple *)

Extensions

Edited by N. J. A. Sloane, May 22 2014

A172447 a(n) = (-1 + 5*2^(2*n + 1) - 3*n)/9.

Original entry on oeis.org

1, 4, 17, 70, 283, 1136, 4549, 18202, 72815, 291268, 1165081, 4660334, 18641347, 74565400, 298261613, 1193046466, 4772185879, 19088743532, 76354974145, 305419896598, 1221679586411, 4886718345664, 19546873382677, 78187493530730, 312749974122943, 1250999896491796
Offset: 0

Views

Author

Paul Curtz, Feb 03 2010

Keywords

Comments

a(n) mod 10 gives the 10-periodic sequence 1, 4, 7, 0, 3, 6, 9, 2, 5, 8 (and repeat, A131579 shifted, A144468 reversed) which contains all ten digits, that has a "palindromic" symmetry: 1 + 8 = 4 + 5 = 7 + 2 = 0 + 9 = 3 + 6 = 9.
The inverse binomial transform gives 1, 3, 10, 30, 90, ... (A062107 shifted). - R. J. Mathar, Feb 11 2010

Crossrefs

Cf. A072197 (first differences).

Programs

  • Magma
    [(-1+5*2^(2*n+1)-3*n)/9: n in [0..30]]; // Vincenzo Librandi, Aug 05 2011
    
  • Mathematica
    LinearRecurrence[{6, -9, 4}, {1, 4, 17}, 30] (* Harvey P. Dale, Mar 25 2016 *)
    ((-1 + 5 2^(2# + 1) - 3#)/9  &) /@ Range[0, 29] (* Alonso del Arte, Apr 25 2020 *)
  • PARI
    a(n)=(10*4^n-3*n)\9 \\ Charles R Greathouse IV, Jul 21 2015
    
  • Scala
    val powerOf2: LazyList[BigInt] = LazyList.iterate(1: BigInt)(_ * 2)
    (0 to 29).map(n => (-1 + 5 * powerOf2(2 * n + 1) - 3 * n)/9) // Alonso del Arte, Apr 25 2020

Formula

a(n) = 6*a(n - 1) - 9*a(n - 2) + 4*a(n - 3).
a(n + 1) - 4*a(n) = n.
a(n) = A172416(2n + 1).
G.f.: (1 - 2*x + 2*x^2)/((1 - 4*x) * (x - 1)^2). - R. J. Mathar, Feb 11 2010
E.g.f.: (10*exp(4*x) - (1 + 3*x)*exp(x))/9. - G. C. Greubel, Nov 02 2018

Extensions

Definition replaced by closed formula by R. J. Mathar, Feb 11 2010

A062106 Number of ways a black pawn (from any starting square on the second back rank) can (theoretically) end on the n-th square of the leftmost file counted from the back rank.

Original entry on oeis.org

0, 1, 2, 6, 15, 40, 109, 302, 846, 2390, 6796, 19426, 55767, 160668, 464305, 1345282, 3906701, 11367696, 33135987, 96740610, 282831981, 827939880, 2426431239, 7118546874, 20904025380, 61439768166, 180725813478, 532004277518
Offset: 1

Views

Author

Antti Karttunen, May 30 2001

Keywords

Crossrefs

The left column of table A062104. Cf. also A062107.

Programs

  • Maple
    [seq(ChessPawnTriangle(j,1),j=1..40)];
Showing 1-5 of 5 results.