A005097 (Odd primes - 1)/2.
1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 23, 26, 29, 30, 33, 35, 36, 39, 41, 44, 48, 50, 51, 53, 54, 56, 63, 65, 68, 69, 74, 75, 78, 81, 83, 86, 89, 90, 95, 96, 98, 99, 105, 111, 113, 114, 116, 119, 120, 125, 128, 131, 134, 135, 138, 140, 141, 146, 153, 155, 156
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Richard R. Forberg, Comments on A005097
- Peter Horak and Bader F. AlBdaiwi, Diameter Perfect Lee Codes, arXiv:1109.3475 [cs.IT], 2011-2012.
- Daniel Kohen and Ivan Sadofschi, A New Approach on the Seating Couples Problem, arXiv:1006.2571 [math.CO], 2010.
- Dhananjay P. Mehendale, On Hamilton Decompositions, arXiv:0806.0251 [math.GM], 2008.
- Eric Weisstein's World of Mathematics, Legendre Symbol
Crossrefs
A130290 is an essentially identical sequence.
Numbers n such that 2n+k is prime: this seq(k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Programs
-
Haskell
a005097 = (`div` 2) . a065091 -- Reinhard Zumkeller, Jan 02 2013
-
Magma
[n: n in [1..160] |IsPrime(2*n+1)]; // Vincenzo Librandi, Feb 16 2015
-
Maple
with(numtheory): p:=n-> ithprime(n):seq((p(n+1)^2-1)/(2*sigma(p(n+1))), n= 1..64) # Gary Detlefs, May 02 2012
-
Mathematica
Table[p=Prime[n];(p-1)/2, {n, 2, 22}] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *) (Prime[Range[2,70]]-1)/2 (* Harvey P. Dale, Jul 11 2020 *)
-
PARI
forprime(p=3,1e4,print1(p>>1", ")) \\ Charles R Greathouse IV, Jun 16 2011
-
Python
from sympy import prime def A005097(n): return prime(n+1)//2 # Chai Wah Wu, Jun 04 2022
Formula
a(n) = (prime(n+1)^2-1)/(2*sigma(prime(n+1))) = (A000040(n+1)^2-1)/(2*A000203(A000040(n+1))). - Gary Detlefs, May 02 2012
a(n) = (A065091(n) - 1) / 2. - Reinhard Zumkeller, Jan 02 2013
a(n) ~ n*log(n)/2. - Ilya Gutkovskiy, Jul 11 2016
a(n) = A294507(n) (mod prime(n+1)). - Jonathan Sondow, Nov 04 2017
a(n) = A130290(n+1). - Chai Wah Wu, Jun 04 2022
Comments