A005126 a(n) = 2^n + n + 1.
2, 4, 7, 12, 21, 38, 71, 136, 265, 522, 1035, 2060, 4109, 8206, 16399, 32784, 65553, 131090, 262163, 524308, 1048597, 2097174, 4194327, 8388632, 16777241, 33554458, 67108891, 134217756, 268435485, 536870942, 1073741855, 2147483680, 4294967329, 8589934626
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992; arXiv:0911.4975 [math.NT], 2009.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 921
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Programs
-
Magma
[2^n+n+1: n in [0..40]]; // Vincenzo Librandi, Oct 22 2011
-
Maple
A005126:=-(2-4*z+z**2)/(2*z-1)/(z-1)**2; # Conjectured by Simon Plouffe in his 1992 dissertation g:=z/(1-2*z): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)+n, n=1..34); # Zerinvary Lajos, Jan 11 2009
-
Mathematica
s=2;lst={s};Do[s+=(s-n);AppendTo[lst, Abs[s]], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 10 2008 *) Table[2^n + n + 1, {n, 0, 30}] (* Wesley Ivan Hurt, Oct 28 2014 *) LinearRecurrence[{4,-5,2},{2,4,7},40] (* Harvey P. Dale, Aug 18 2016 *)
-
PARI
a(n)=2^n+n+1 \\ Charles R Greathouse IV, Sep 24 2015
Formula
G.f.: (2-4*x+x^2)/((1-2*x)*(1-x)^2). - Simon Plouffe
E.g.f.: exp(x)*(exp(x)+1+x) = U(0) where U(k) = 1 + x/(2^k - 2^k/(x + 1 - x^2*2^(k+1)/(x*2^(k+1) + (k+1)/U(k+1) )));(continued fraction, 3rd kind, 4-step ). - Sergei N. Gladkovskii, Dec 01 2012
Extensions
More terms from N. J. A. Sloane, Sep 28 2007
Comments