A271573
Numerator of (0 followed by A005126(n)= 2, 4, 7, ...)/2^n.
Original entry on oeis.org
0, 1, 1, 7, 3, 21, 19, 71, 17, 265, 261, 1035, 515, 4109, 4103, 16399, 2049, 65553, 65545, 262163, 131077, 1048597, 1048587, 4194327, 1048579, 16777241, 16777229, 67108891, 33554439, 268435485, 268435471, 1073741855, 67108865, 4294967329, 4294967313
Offset: 0
a(0), a(1), a(2), a(3), a(4), are the numerators of reduced fractions 0/1, 2/2, 4/4, 7/8, 12/16, ... .
-
[0] cat [Numerator((2^(n-1)+n)/2^n): n in [1..40]]; // Vincenzo Librandi, Oct 13 2017
-
Prepend[Table[Numerator[(2^n + n + 1)/2^(n + 1)], {n, 0, 100}], 0] (* Robert Price, Apr 10 2016 *)
(* Computation from Oresme numbers n/2^n: *) a[n_] := Numerator[n/2^n + If[n < 2, 0, 1]/2]; (* Jean-François Alcover, Apr 28 2016, after Paul Curtz *)
-
a(n) = if(n==0, 0, numerator((2^(n-1)+n)/2^n)); \\ Altug Alkan, Apr 10 2016
A279635
Denominator of (0 followed by A005126(n)= 2, 4, 7, ...)/2^n, a sequence corresponding to A271573.
Original entry on oeis.org
1, 1, 1, 8, 4, 32, 32, 128, 32, 512, 512, 2048, 1024, 8192, 8192, 32768, 4096, 131072, 131072, 524288, 262144, 2097152, 2097152, 8388608, 2097152, 33554432, 33554432, 134217728, 67108864, 536870912, 536870912, 2147483648, 134217728, 8589934592, 8589934592, 34359738368, 17179869184, 137438953472, 137438953472, 549755813888, 137438953472
Offset: 0
-
a[0] = 1; a[n_] := Denominator[(2^(n-1)+n)/2^n]; Table[a[n], {n, 0, 40}]
(* or *)
a[0] = 1; a[n_] := 2^(n-IntegerExponent[2^(n-1)+n, 2]); Table[a[n], {n, 0, 40}]
A000051
a(n) = 2^n + 1.
Original entry on oeis.org
2, 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769, 65537, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649, 4294967297, 8589934593
Offset: 0
- Paul Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 75.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 46, 60, 244.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 141.
- Ivan Panchenko, Table of n, a(n) for n = 0..100
- E. R. Berlekamp, A contribution to mathematical psychometrics, Unpublished Bell Labs Memorandum, Feb 08 1968 [Annotated scanned copy]
- Bakir Farhi, Summation of Certain Infinite Lucas-Related Series, J. Int. Seq., Vol. 22 (2019), Article 19.1.6.
- Massimiliano Fasi and Gian Maria Negri Porzio, Determinants of Normalized Bohemian Upper Hessemberg Matrices, University of Manchester (England, 2019).
- Bartomeu Fiol, Jairo Martínez-Montoya, and Alan Rios Fukelman, The planar limit of N=2 superconformal field theories, arXiv:2003.02879 [hep-th], 2020.
- Bernard Frénicle de Bessy, Solutio duorum problematum circa numeros cubos et quadratos, (1657). Bibliothèque Nationale de Paris.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 114
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 362
- Edouard Lucas, The Theory of Simply Periodic Numerical Functions, Fibonacci Association, 1969. English translation of article "Théorie des Fonctions Numériques Simplement Périodiques, I", Amer. J. Math., 1 (1878), 184-240.
- Kival Ngaokrajang, Illustration of Hilbert curve for n = 1..5
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- D. C. Santos, E. A. Costa, and P. M. M. C. Catarino, On Gersenne Sequence: A Study of One Family in the Horadam-Type Sequence, Axioms 14, 203, (2025). See p. 1.
- Amelia Carolina Sparavigna, On the generalized sums of Mersenne, Fermat, Cullen and Woodall Numbers, Politecnico di Torino (Italy, 2019).
- Amelia Carolina Sparavigna, Composition Operations of Generalized Entropies Applied to the Study of Numbers, International Journal of Sciences (2019) Vol. 8, No. 4, 87-92.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Eric Weisstein's World of Mathematics, Crossed Prism Graph.
- Eric Weisstein's World of Mathematics, Cunningham Number.
- Eric Weisstein's World of Mathematics, Fermat-Lucas Number.
- Eric Weisstein's World of Mathematics, Hilbert curve.
- Eric Weisstein's World of Mathematics, Independent Vertex Set.
- Eric Weisstein's World of Mathematics, Irredundant Set.
- Eric Weisstein's World of Mathematics, Matching Number.
- Eric Weisstein's World of Mathematics, Maximum Independent Edge Set.
- Eric Weisstein's World of Mathematics, Rudin-Shapiro Sequence.
- Eric Weisstein's World of Mathematics, Star Graph.
- Eric Weisstein's World of Mathematics, Vertex Cover.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Apart from the initial 1, identical to
A094373.
See
A008776 for definitions of Pisot sequences.
Cf.
A007583 (a((n-1)/2)/3 for odd n).
-
a000051 = (+ 1) . a000079
a000051_list = iterate ((subtract 1) . (* 2)) 2
-- Reinhard Zumkeller, May 03 2012
-
[2^n+1: n in [0..40]]; // G. C. Greubel, Jan 18 2025
-
A000051:=-(-2+3*z)/(2*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation
a := n -> add(binomial(n,k)*bernoulli(n-k,1)*2^(k+1)/(k+1),k=0..n); # Peter Luschny, Apr 20 2009
-
Table[2^n + 1, {n,0,40}]
2^Range[0,40] + 1 (* Eric W. Weisstein, Jul 17 2017 *)
LinearRecurrence[{3, -2}, {2, 3}, 40] (* Eric W. Weisstein, Sep 21 2017 *)
-
a(n)=2^n+1
-
first(n) = Vec((2 - 3*x)/((1 - x)*(1 - 2*x)) + O(x^n)) \\ Iain Fox, Dec 31 2017
-
def A000051(n): return (1<Chai Wah Wu, Dec 21 2022
A176691
a(n) = 2^n + 2*n + 1.
Original entry on oeis.org
2, 5, 9, 15, 25, 43, 77, 143, 273, 531, 1045, 2071, 4121, 8219, 16413, 32799, 65569, 131107, 262181, 524327, 1048617, 2097195, 4194349, 8388655, 16777265, 33554483, 67108917, 134217783, 268435513, 536870971, 1073741885, 2147483711, 4294967361, 8589934659, 17179869253
Offset: 0
-
List([0..35],n->2^n+2*n+1); # Muniru A Asiru, Mar 25 2018
-
[2^n + 2*n + 1: n in [0..40]]; // Vincenzo Librandi, Aug 12 2015
-
seq(2^n+2*n+1,n=0..35); # Muniru A Asiru, Mar 25 2018
-
Table[2^n + 2 n + 1, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
LinearRecurrence[{4, -5, 2}, {2, 5, 9}, 40] (* Vincenzo Librandi, Aug 12 2015 *)
CoefficientList[Series[(-2 + 3 x + x^2)/((-1 + x)^2 (-1 + 2 x)), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 30 2017 *)
-
vector(40, n, n--; 2^n + 2*n + 1) \\ Michel Marcus, Aug 12 2015
Corrected (one 1048617 replaced by 2097195) by
R. J. Mathar, Apr 28 2010
A267471
T(n,k)=Number of length-n 0..k arrays with no following elements larger than the first repeated value.
Original entry on oeis.org
2, 3, 4, 4, 9, 7, 5, 16, 24, 12, 6, 25, 58, 62, 21, 7, 36, 115, 204, 160, 38, 8, 49, 201, 515, 712, 418, 71, 9, 64, 322, 1096, 2285, 2490, 1112, 136, 10, 81, 484, 2072, 5921, 10119, 8770, 3018, 265, 11, 100, 693, 3592, 13216, 31880, 44901, 31200, 8352, 522, 12, 121
Offset: 1
Some solutions for n=6 k=4
..0....1....1....4....0....1....0....4....1....2....3....4....4....1....0....3
..4....0....4....0....4....0....3....0....2....3....1....4....3....4....1....0
..4....2....2....4....3....4....2....4....0....0....2....4....2....0....3....2
..0....3....4....0....3....4....3....3....1....1....4....2....4....4....4....3
..2....4....1....1....0....0....1....1....2....1....3....1....3....2....1....3
..4....4....1....1....3....2....0....2....0....0....0....1....4....3....1....1
A356784
Inventory of positions as an irregular table; row 0 contains 0, subsequent rows contain the 0-based positions of 0's, followed by the position of 1's, of 2's, etc. in prior rows flattened.
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 2, 3, 0, 1, 2, 4, 3, 5, 6, 7, 0, 1, 2, 4, 8, 3, 5, 9, 6, 10, 7, 12, 11, 13, 14, 15, 0, 1, 2, 4, 8, 16, 3, 5, 9, 17, 6, 10, 18, 7, 12, 21, 11, 19, 13, 22, 14, 24, 15, 26, 20, 23, 25, 28, 27, 29, 30, 31, 0, 1, 2, 4, 8, 16, 32, 3, 5, 9, 17, 33
Offset: 0
Table begins:
0,
0,
0, 1,
0, 1, 2, 3,
0, 1, 2, 4, 3, 5, 6, 7,
0, 1, 2, 4, 8, 3, 5, 9, 6, 10, 7, 12, 11, 13, 14, 15,
...
For n = 5:
- the terms in rows 0..4 are: 0, 0, 0, 1, 0, 1, 2, 3, 0, 1, 2, 4, 3, 5, 6, 7,
- we have 0's at positions 0, 1, 2, 4, 8,
- we have 1's at positions 3, 5, 9,
- we have 2's at positions 6, 10,
- we have 3's at positions 7, 12,
- we have one 4 at position 11,
- we have one 5 at position 13,
- we have one 6 at position 14,
- we have one 7 at position 15,
- so row 5 is: 0, 1, 2, 4, 8, 3, 5, 9, 6, 10, 7, 12, 11, 13, 14, 15.
-
terms = [0,]
for i in range(1,10):
new_terms = []
for j in range(max(terms)+1):
for k in range(len(terms)):
if terms[k] == j: new_terms.append(k)
terms.extend(new_terms)
print(terms) # Gleb Ivanov, Nov 01 2022
A100314
Number of 2 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (10;0) and (01;1).
Original entry on oeis.org
1, 4, 8, 14, 24, 42, 76, 142, 272, 530, 1044, 2070, 4120, 8218, 16412, 32798, 65568, 131106, 262180, 524326, 1048616, 2097194, 4194348, 8388654, 16777264, 33554482, 67108916, 134217782, 268435512, 536870970, 1073741884, 2147483710, 4294967360, 8589934658
Offset: 0
- Arthur H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, 1971.
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Ronald Cools, Encyclopaedia of Cubature Formulas
- S. Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
-
List([0..40],n->2^n+2*n); # Muniru A Asiru, Dec 21 2018
-
[2^n+2*n: n in [1..40]]; // Vincenzo Librandi, Oct 22 2011
-
a:= proc(n) 2^n + 2*n: end: seq(a(n),n=0..50); # Gary W. Adamson, Jul 20 2007
-
LinearRecurrence[{4,-5,2}, {1,4,8}, 34] (* Jean-François Alcover, Mar 19 2020 *)
-
makelist(2^n + 2*n, n, 0, 50); /* Franck Maminirina Ramaharo, Dec 19 2018 */
-
[2^n +2*n for n in range(41)] # G. C. Greubel, Feb 01 2023
A228367
n-th element of the ruler function plus the highest power of 2 dividing n.
Original entry on oeis.org
2, 4, 2, 7, 2, 4, 2, 12, 2, 4, 2, 7, 2, 4, 2, 21, 2, 4, 2, 7, 2, 4, 2, 12, 2, 4, 2, 7, 2, 4, 2, 38, 2, 4, 2, 7, 2, 4, 2, 12, 2, 4, 2, 7, 2, 4, 2, 21, 2, 4, 2, 7, 2, 4, 2, 12, 2, 4, 2, 7, 2, 4, 2, 71, 2, 4, 2, 7, 2, 4, 2, 12, 2, 4, 2, 7, 2, 4, 2, 21, 2, 4, 2, 7
Offset: 1
Illustration of initial terms (n = 1..16) using a diagram of compositions in which A001511(n) is the length of the horizontal line segment in row n and A006519(n) is the length of the vertical line segment ending in row n. Hence a(n) is the length of the n-th pair of orthogonal line segments. Also counting both the x-axis and the y-axis we have that A001511(n) is also the largest part of the n-th region of the diagram and A006519(n) is also the number of parts of the n-th region of the diagram, see below.
---------------------------------------------------------
. Diagram of
n A001511(n) compositions A006519(n) a(n)
---------------------------------------------------------
1 1 _| | | | | 1 2
2 2 _ _| | | | 2 4
3 1 _| | | | 1 2
4 3 _ _ _| | | 4 7
5 1 _| | | | 1 2
6 2 _ _| | | 2 4
7 1 _| | | 1 2
8 4 _ _ _ _| | 8 12
9 1 _| | | | 1 2
10 2 _ _| | | 2 4
11 1 _| | | 1 2
12 3 _ _ _| | 4 7
13 1 _| | | 1 2
14 2 _ _| | 2 4
15 1 _| | 1 2
16 5 _ _ _ _ _| 16 21
...
If written as an irregular triangle the sequence begins:
2;
4;
2, 7;
2, 4, 2, 12;
2, 4, 2, 7, 2, 4, 2, 21;
2, 4, 2, 7, 2, 4, 2, 12, 2, 4, 2, 7, 2, 4, 2, 38;
...
Row lengths is A011782. Right border gives A005126.
Counting both the x-axis and the y-axis we have that A038712(n) is the area (or the number of cells) of the n-th region of the diagram. Note that adding only the x-axis to the diagram we have a tree. - _Omar E. Pol_, Nov 07 2018
A194455
a(n) = 2^n + 3n + 1.
Original entry on oeis.org
2, 6, 11, 18, 29, 48, 83, 150, 281, 540, 1055, 2082, 4133, 8232, 16427, 32814, 65585, 131124, 262199, 524346, 1048637, 2097216, 4194371, 8388678, 16777289, 33554508, 67108943, 134217810, 268435541, 536871000, 1073741915, 2147483742, 4294967393, 8589934692, 17179869287
Offset: 0
Cf.
A062709 (first differences),
A000079 (second and successive differences).
Cf.
A146529 (differences between alternate terms, for n>2).
-
[2^n+3*n+1: n in [0..31]];
-
Table[2^n + 3 n + 1, {n, 0, 40}] (* Vincenzo Librandi, Mar 26 2013 *)
LinearRecurrence[{4,-5,2},{2,6,11},40] (* Harvey P. Dale, Oct 01 2014 *)
-
for(n=0, 31, print1(2^n+3*n+1", "));
Original entry on oeis.org
1, 2, 4, 7, 12, 21, 38, 71, 136, 265, 522, 1035, 2060, 4109, 8206, 16399, 32784, 65553, 131090, 262163, 524308, 1048597, 2097174, 4194327, 8388632, 16777241, 33554458, 67108891, 134217756, 268435485
Offset: 1
-
s = {0, 0}; w[0] = StringJoin[Map[ToString, s]];
w[n_] := StringReplace[w[n - 1], {"00" -> "0010", "1" -> "11"}]
Table[w[n], {n, 0, 8}]
st = ToCharacterCode[w[11]] - 48 (* A288132 *)
Flatten[Position[st, 0]] (* A288133 *)
Flatten[Position[st, 1]] (* A288134 *)
Showing 1-10 of 24 results.
Comments