A005183 a(n) = n*2^(n-1) + 1.
1, 2, 5, 13, 33, 81, 193, 449, 1025, 2305, 5121, 11265, 24577, 53249, 114689, 245761, 524289, 1114113, 2359297, 4980737, 10485761, 22020097, 46137345, 96468993, 201326593, 419430401, 872415233, 1811939329, 3758096385, 7784628225, 16106127361, 33285996545
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Stephan Baier and Pallab Kanti Dey, Prime powers dividing products of consecutive integer values of x^2^n + 1, arXiv:1905.13003 [math.NT], 2019. See p. 7.
- Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See p. 16.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
- Andrew M. Baxter and Lara K. Pudwell, Ascent sequences avoiding pairs of patterns, The Electronic Journal of Combinatorics, Volume 22, Issue 1 (2015) Paper #P1.58.
- Christian Bean, Bjarki Gudmundsson, and Henning Ulfarsson, Automatic discovery of structural rules of permutation classes, arXiv:1705.04109 [math.CO], 2017.
- R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20.
- R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
- R. K. Guy and N. J. A. Sloane, Correspondence, 1988.
- Vít Jelínek, Toufik Mansour, and Mark Shattuck, On multiple pattern avoiding set partitions, Adv. Appl. Math. 50 (2) (2013) 292-326, Example 4.16, H_{1223} and Example 4.17 L_{1232} and propositions 4.20 and 4.22, all shifted with an additional leading a(0)=1.
- Toufik Mansour and Mark Shattuck, On ascent sequences avoiding 021 and a pattern of length four, arXiv:2507.17947 [math.CO], 2025. See p. 11.
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Lara Pudwell, Systematic Studies in Pattern Avoidance, 2005.
- Lara Pudwell, Pattern-avoiding ascent sequences, Slides from a talk, 2015 Joint Mathematics Meetings, AMS Special Session on Enumerative Combinatorics, January 11, 2015.
- Lara Pudwell and Andrew Baxter, Ascent sequences avoiding pairs of patterns, Permutation Patterns 2014, East Tennessee State University, July 7, 2014.
- Index entries for linear recurrences with constant coefficients, signature (5,-8,4).
Programs
-
Magma
[n*2^(n-1)+1: n in [0..35]]; // Vincenzo Librandi, May 14 2017
-
Maple
A005183 := (1-3*z+3*z**2)/(1-z)/(1-2*z)**2; # Generating function conjectured by Simon Plouffe in his 1992 dissertation.
-
Mathematica
Table[(n+1)*2^n+1,{n,1,30}] (* Alexander Adamchuk, Sep 09 2006 *) LinearRecurrence[{5,-8,4},{1,2,5},30] (* Harvey P. Dale, Jul 29 2015 *)
-
PARI
a(n)=n*2^(n-1)+1 \\ Charles R Greathouse IV, Sep 24 2015
-
Sage
[2^(n-1)*n+1 for n in (0..35)] # G. C. Greubel, May 31 2019
Formula
Main diagonal of the array defined by T(0, j)=j+1 j>=0, T(i, 0)=i+1 i>=0, T(i, j)=T(i-1, j-1)+T(i-1, j)-1. - Benoit Cloitre, Jun 17 2003
G.f.: (1 -3*x +3*x^2)/((1-x)*(1-2*x)^2). - Lara Pudwell, Jan 21 2006
E.g.f.: exp(x) +x*exp(2*x). - Joerg Arndt, May 22 2013
Binomial transform of A028310. a(n) = 1 + Sum{k=0..n} C(n, k)*k = 1 + A001787(n). - Paul Barry, Jul 21 2003
Row sums of triangle A134399. - Gary W. Adamson, Oct 23 2007
a(n) = 2*a(n-1) +2^(n-1) -1 (with a(0)=1). - Vincenzo Librandi, Dec 31 2010
Extensions
More terms from Lara Pudwell, Jan 21 2006
Edited by N. J. A. Sloane at the suggestion of Jim Propp, Jul 14 2007
Comments