cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005183 a(n) = n*2^(n-1) + 1.

Original entry on oeis.org

1, 2, 5, 13, 33, 81, 193, 449, 1025, 2305, 5121, 11265, 24577, 53249, 114689, 245761, 524289, 1114113, 2359297, 4980737, 10485761, 22020097, 46137345, 96468993, 201326593, 419430401, 872415233, 1811939329, 3758096385, 7784628225, 16106127361, 33285996545
Offset: 0

Views

Author

Keywords

Comments

a(n-1) is the number of permutations of length n which avoid the patterns 132, 4312. - Lara Pudwell, Jan 21 2006
Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) <= e(j) >= e(k) and e(i) != e(k). [Martinez and Savage, 2.11] - Eric M. Schmidt, Jul 17 2017
Indices of records in A066099. Also, indices of "cusps" in the graph of A030303 giving positions of 1's in the binary Champernowne word A030190. - M. F. Hasler, Oct 12 2020

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

Main diagonal of the array defined by T(0, j)=j+1 j>=0, T(i, 0)=i+1 i>=0, T(i, j)=T(i-1, j-1)+T(i-1, j)-1. - Benoit Cloitre, Jun 17 2003
G.f.: (1 -3*x +3*x^2)/((1-x)*(1-2*x)^2). - Lara Pudwell, Jan 21 2006
E.g.f.: exp(x) +x*exp(2*x). - Joerg Arndt, May 22 2013
Binomial transform of A028310. a(n) = 1 + Sum{k=0..n} C(n, k)*k = 1 + A001787(n). - Paul Barry, Jul 21 2003
a(n) = Sum_{k=0..2^n} A000120(k) = A000788(2^n). - Benoit Cloitre, Sep 25 2003
Row sums of triangle A134399. - Gary W. Adamson, Oct 23 2007
a(n) = A000788(A000079(n)). - Reinhard Zumkeller, Mar 04 2010
a(n) = 2*a(n-1) +2^(n-1) -1 (with a(0)=1). - Vincenzo Librandi, Dec 31 2010

Extensions

More terms from Lara Pudwell, Jan 21 2006
Edited by N. J. A. Sloane at the suggestion of Jim Propp, Jul 14 2007