A005384 Sophie Germain primes p: 2p+1 is also prime.
2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 1013, 1019, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1439, 1451, 1481, 1499, 1511, 1559
Offset: 1
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
- A. Peretti, The quantity of Sophie Germain primes less than x, Bull. Number Theory Related Topics, Vol. 11, No. 1-3 (1987), pp. 81-92.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 76, 227-230.
- Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 83.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 114.
Links
- J. S. Cheema, Table of n, a(n) for n = 1..100000. [This replaces an earlier b-file computed by T. D. Noe]
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- R. P. Boas & N. J. A. Sloane, Correspondence, 1974
- P. Bruillard, S.-H. Ng, E. Rowell and Z. Wang, On modular categories, arXiv preprint arXiv:1310.7050 [math.QA], 2013.
- Chris K. Caldwell, The Prime Glossary, Sophie Germain Prime
- Andrea Del Centina, Letters of Sophie Germain preserved in Florence Historia Mathematica, Vol. 32 (2005), pp. 60-75.
- Harvey Dubner, Large Sophie Germain Primes, Math. Comp., Vol. 65, No. 213 (1996), pp. 393-396.
- Luis H. Gallardo and Olivier Rahavandrainy, There are finitely many even perfect polynomials over F_p with p+1 irreducible divisors, Acta Mathematica Universitatis Comenianae, Vol. 83, No. 2, 2016, 261-275.
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- Reikku Kulon, Sublinear arbitrary precision generator of Sophie Germain and safe primes in C (public domain).
- Henri Lifchitz, A new and simpler primality test for Sophie-Germain numbers(q=2*p+1).
- Victor Meally, Letter to N. J. A. Sloane, no date.
- Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867v1 [math.NT], May 04 2013.
- Frans Oort, Prime numbers, 2013.
- Mario Raso, Integer Sequences in Cryptography: A New Generalized Family and its Application, Ph. D. Thesis, Sapienza University of Rome (Italy 2025). See p. 31, 114.
- Larry Riddle, Sophie Germain and Fermat's Last Theorem, Agnes Scott College, Math. Dept., Jul, 1999.
- Carlos Rivera, Puzzle 1122. OEIS A005385, The Prime Puzzles & Problems Connection.
- Carlos Rivera, Puzzle 1140. Test for Sophie Germain primes, The Prime Puzzles & Problems Connection.
- Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017.
- Anthony G. Shannon, Peter J.-S. Shiue, Tian-Xiao He, and Christopher Saito, On the special cases of Carmichael's totient conjecture, Notes Num. Theor. Disc. Math. (2025) Vol. 31, No. 3, 504-534.
- Rosemary Sullivan and Neil Watling, Independent divisibility pairs on the set of integers from 1 to n, INTEGERS, Vol. 13 (2013), Article A65.
- Agoh Takashi, On Sophie Germain primes, Number theory (Liptovský Ján, 1999), Tatra Mt. Math. Publ., Vol. 20 (2000), pp. 65-73.
- Terence Tao, Obstructions to uniformity and arithmetic patterns in the primes, arXiv:math/0505402 [math.NT], 2005.
- Apoloniusz Tyszka, On sets X subset of N for which we know an algorithm that computes a threshold number t(X) in N such that X is infinite if and only if X contains an element greater than t(X), 2019.
- Vmoraru, PlanetMath.org, Sophie Germain prime.
- Samuel S. Wagstaff, Jr., Sum of Reciprocals of Germain Primes, Journal of Integer Sequences, Vol. 24, No. 2 (2021), Article 21.9.5.
- Eric Weisstein's World of Mathematics, Sophie Germain Prime.
- Eric Weisstein's World of Mathematics, Integer Sequence Primes.
- Wikipedia, Sophie Germain prime.
- Samuel Yates, Sophie Germain primes, in "The mathematical heritage of C. F. Gauss," World Sci. Publ., River Edge, NJ, 1991, pp. 882-886.
Crossrefs
Programs
-
GAP
Filtered([1..1600],p->IsPrime(p) and IsPrime(2*p+1)); # Muniru A Asiru, Mar 06 2019
-
Magma
[ p: p in PrimesUpTo(1560) | IsPrime(2*p+1) ]; // Klaus Brockhaus, Jan 01 2009
-
Maple
A:={}: for n from 1 to 246 do if isprime(2*ithprime(n)+1) then A:=A union {ithprime(n)} fi od: A:=A; # Emeric Deutsch, Dec 09 2004
-
Mathematica
Select[Prime[Range[1000]],PrimeQ[2#+1]&] lst = {}; Do[If[PrimeQ[n + 1] && PrimeOmega[n] == 2, AppendTo[lst, n/2]], {n, 2, 10^4}]; lst (* Hilko Koning, Aug 17 2021 *)
-
PARI
select(p->isprime(2*p+1), primes(1000)) \\ In old PARI versions <= 2.4.2, use select(primes(1000), p->isprime(2*p+1)).
-
PARI
forprime(n=2, 10^3, if(ispseudoprime(2*n+1), print1(n, ", "))) \\ Felix Fröhlich, Jun 15 2014
-
PARI
is_A005384=(p->isprime(2*p+1)&&isprime(p)); {A005384_vec(N=100,p=1)=vector(N,i,until(isprime(2*p+1),p=nextprime(p+1));p)} \\ M. F. Hasler, Mar 03 2020
-
Python
from sympy import isprime, nextprime def ok(p): return isprime(2*p+1) def aupto(limit): # only test primes alst, p = [], 2 while p <= limit: if ok(p): alst.append(p) p = nextprime(p) return alst print(aupto(1559)) # Michael S. Branicky, Feb 03 2021
Formula
a(n) mod 10 <> 7. - Reinhard Zumkeller, Feb 12 2009
A156660(a(n)) = 1; A156874 gives numbers of Sophie Germain primes <= n. - Reinhard Zumkeller, Feb 18 2009
tau(4*a(n) + 2) = tau(4*a(n)) - 2, for n > 1. - Arkadiusz Wesolowski, Aug 25 2012
eulerphi(4*a(n) + 2) = eulerphi(4*a(n)) + 2, for n > 1. - Arkadiusz Wesolowski, Aug 26 2012
Sum_{n>=1} 1/a(n) is in the interval (1.533944198, 1.8026367) (Wagstaff, 2021). - Amiram Eldar, Nov 04 2021
a(n) >> n log^2 n. - Charles R Greathouse IV, Jul 25 2024
Comments