cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005384 Sophie Germain primes p: 2p+1 is also prime.

Original entry on oeis.org

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 1013, 1019, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1439, 1451, 1481, 1499, 1511, 1559
Offset: 1

Views

Author

Keywords

Comments

Then 2p+1 is called a safe prime: see A005385.
Primes p such that the equation phi(x) = 2p has solutions, where phi is the totient function. See A087634 for another such collection of primes. - T. D. Noe, Oct 24 2003
Subsequence of A117360. - Reinhard Zumkeller, Mar 10 2006
Let q = 2n+1. For these n (and q), the difference of two cyclotomic polynomials can be written as a cyclotomic polynomial in x^2: Phi(q,x) - Phi(2q,x) = 2x Phi(n,x^2). - T. D. Noe, Jan 04 2008
A Sophie Germain prime p is 2, 3 or of the form 6k-1, k >= 1, i.e., p = 5 (mod 6). A prime p of the form 6k+1, k >= 1, i.e., p = 1 (mod 6), cannot be a Sophie Germain prime since 2p+1 is divisible by 3. - Daniel Forgues, Jul 31 2009
Also solutions to the equation: floor(4/A000005(2*n^2+n)) = 1. - Enrique Pérez Herrero, May 03 2012
In the spirit of the conjecture related to A217788, we conjecture that for any integers n >= m > 0 there are infinitely many integers b > a(n) such that the number Sum_{k=m..n} a(k)*b^(n-k) is prime. - Zhi-Wei Sun, Mar 26 2013
If k is the product of a Sophie Germain prime p and its corresponding safe prime 2p+1, then a(n) = (k-phi(k))/3, where phi is Euler's totient function. - Wesley Ivan Hurt, Oct 03 2013
Giovanni Resta found the first Sophie Germain prime which is also a Brazilian number (A125134), 28792661 = 1 + 73 + 73^2 + 73^3 + 73^4 = (11111)73. - _Bernard Schott, Mar 07 2019
For all Sophie Germain primes p >= 5, 2*p + 1 = min(A, B) where A is the smallest prime factor of 2^p - 1 and B the smallest prime factor of (2^p + 1) / 3. - Alain Rocchelli, Feb 01 2023
Consider a pair of numbers (p, 2*p+1), with p >= 3. Then p is a Sophie Germain prime iff (p-1)!^2 + 6*p == 1 (mod p*(2*p+1)). - Davide Rotondo, May 02 2024

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Peretti, The quantity of Sophie Germain primes less than x, Bull. Number Theory Related Topics, Vol. 11, No. 1-3 (1987), pp. 81-92.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 76, 227-230.
  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 83.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 114.

Crossrefs

Cf. also A000355, A156541, A156542, A156592, A161896, A156660, A156874, A092816, A023212, A007528 (primes of the form 6k-1).
For primes p that remains prime through k iterations of the function f(x) = 2x + 1: this sequence (k=1), A007700 (k=2), A023272 (k=3), A023302 (k=4), A023330 (k=5), A278932 (k=6), A138025 (k=7), A138030 (k=8).

Programs

  • GAP
    Filtered([1..1600],p->IsPrime(p) and IsPrime(2*p+1)); # Muniru A Asiru, Mar 06 2019
    
  • Magma
    [ p: p in PrimesUpTo(1560) | IsPrime(2*p+1) ]; // Klaus Brockhaus, Jan 01 2009
    
  • Maple
    A:={}: for n from 1 to 246 do if isprime(2*ithprime(n)+1) then A:=A union {ithprime(n)} fi od: A:=A; # Emeric Deutsch, Dec 09 2004
  • Mathematica
    Select[Prime[Range[1000]],PrimeQ[2#+1]&]
    lst = {}; Do[If[PrimeQ[n + 1] && PrimeOmega[n] == 2, AppendTo[lst, n/2]], {n, 2, 10^4}]; lst (* Hilko Koning, Aug 17 2021 *)
  • PARI
    select(p->isprime(2*p+1), primes(1000)) \\ In old PARI versions <= 2.4.2, use select(primes(1000), p->isprime(2*p+1)).
    
  • PARI
    forprime(n=2, 10^3, if(ispseudoprime(2*n+1), print1(n, ", "))) \\ Felix Fröhlich, Jun 15 2014
    
  • PARI
    is_A005384=(p->isprime(2*p+1)&&isprime(p));
      {A005384_vec(N=100,p=1)=vector(N,i,until(isprime(2*p+1),p=nextprime(p+1));p)} \\ M. F. Hasler, Mar 03 2020
    
  • Python
    from sympy import isprime, nextprime
    def ok(p): return isprime(2*p+1)
    def aupto(limit): # only test primes
      alst, p = [], 2
      while p <= limit:
        if ok(p): alst.append(p)
        p = nextprime(p)
      return alst
    print(aupto(1559)) # Michael S. Branicky, Feb 03 2021

Formula

a(n) mod 10 <> 7. - Reinhard Zumkeller, Feb 12 2009
A156660(a(n)) = 1; A156874 gives numbers of Sophie Germain primes <= n. - Reinhard Zumkeller, Feb 18 2009
tau(4*a(n) + 2) = tau(4*a(n)) - 2, for n > 1. - Arkadiusz Wesolowski, Aug 25 2012
eulerphi(4*a(n) + 2) = eulerphi(4*a(n)) + 2, for n > 1. - Arkadiusz Wesolowski, Aug 26 2012
A005097 INTERSECT A000040. - R. J. Mathar, Mar 23 2017
Sum_{n>=1} 1/a(n) is in the interval (1.533944198, 1.8026367) (Wagstaff, 2021). - Amiram Eldar, Nov 04 2021
a(n) >> n log^2 n. - Charles R Greathouse IV, Jul 25 2024