cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005712 Coefficient of x^4 in expansion of (1+x+x^2)^n.

Original entry on oeis.org

1, 6, 19, 45, 90, 161, 266, 414, 615, 880, 1221, 1651, 2184, 2835, 3620, 4556, 5661, 6954, 8455, 10185, 12166, 14421, 16974, 19850, 23075, 26676, 30681, 35119, 40020, 45415, 51336, 57816, 64889, 72590, 80955, 90021, 99826, 110409, 121810, 134070
Offset: 2

Views

Author

Keywords

Comments

a(n) = A111808(n,4) for n>3. - Reinhard Zumkeller, Aug 17 2005
If a 2-set Y and 2-set Z, having one element in common, are subsets of an n-set X then a(n-3) is the number of 5-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 03 2007
Antidiagonal sums of the convolution array A213781. - Clark Kimberling, Jun 22 2012

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n)= A027907(n, 4), n >= 2 (fifth column of trinomial coefficients).

Programs

  • Magma
    I:=[1, 6, 19, 45, 90]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; Vincenzo Librandi, Jun 16 2012
    
  • Maple
    seq(binomial(n+2,n-2) + binomial(n+1,n-2) - binomial(n,n-2), n=2..50); # Zerinvary Lajos, May 16 2006
    A005712:=(-1-z+z**2)/(z-1)**5; # Conjectured (correctly) by Simon Plouffe in his 1992 dissertation.
    A005712 := n -> GegenbauerC(`if`(4A005712(n)), n=2..20); # Peter Luschny, May 10 2016
  • Mathematica
    CoefficientList[Series[(1+x-x^2)/(1-x)^5,{x,0,40}],x] (* Vincenzo Librandi, Jun 16 2012 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,6,19,45,90},40] (* Harvey P. Dale, Apr 30 2015 *)
  • PARI
    Vec((x^2)*(1+x-x^2)/(1-x)^5+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012

Formula

G.f.: (x^2)*(1+x-x^2)/(1-x)^5.
a(n) = binomial(n+2,n-2) + binomial(n+1,n-2) - binomial(n,n-2). - Zerinvary Lajos, May 16 2006
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). Vincenzo Librandi, Jun 16 2012
a(n) = binomial(n,2) + 3*binomial(n,3) + binomial(n,4) (see our comment in A026729). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(n) = GegenbauerC(N, -n, -1/2) where N = 4 if 4Peter Luschny, May 10 2016
E.g.f.: exp(x)*x^2*(12 + 12*x + x^2)/24. - Stefano Spezia, Jul 09 2023

Extensions

More terms from Vladeta Jovovic, Oct 02 2000