A005867 a(0) = 1; for n > 0, a(n) = (prime(n)-1)*a(n-1).
1, 1, 2, 8, 48, 480, 5760, 92160, 1658880, 36495360, 1021870080, 30656102400, 1103619686400, 44144787456000, 1854081073152000, 85287729364992000, 4434961926979584000, 257227791764815872000, 15433667505888952320000
Offset: 0
Examples
a(3): the mod 30 prime remainder set sieve representation yields the remainder set: {1, 7, 11, 13, 17, 19, 23, 29}, 8 elements.
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..99
- Larry Deering, The Black Key Sieve, Box 275, Bellport NY 11713-0275, 1998.
- Alphonse de Polignac, Six propositions arithmologiques déduites du crible d'Ératosthène, Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale, Série 1, Tome 8 (1849), pp. 423-429. See p. 425.
- Frank Ellermann, Illustration for A002110, A005867, A038110, A060753.
- Ken Hicks and Kevin Ward, Series and Product Relations Made from Primes, arXiv:2108.03268 [math.NT], 2021.
- Dennis Martin, Proofs Regarding Primorial Patterns [via Internet Archive Wayback-machine]
- Dennis Martin, Proofs Regarding Primorial Patterns [Cached copy, with permission of the author]
- Francis E. Masat, Letter to N. J. A. Sloane with attachment: "A note on prime number sequences" (unpublished manuscript), Apr. 1991.
- Travis Near, Improving MATLAB's isprime performance without arbitrary-precision arithmetic, arXiv:2108.04791 [cs.MS], 2021.
- John K. Sellers, Distribution of twin primes in repeating sequences of prime factors, arXiv:2108.00288 [math.GM], 2021. See Table 1 p. 11.
- Andrew V. Sutherland, Order Computations in Generic Groups, Ph. D. Dissertation, Math. Dept., M.I.T., 2007.
Crossrefs
Programs
-
Haskell
a005867 n = a005867_list !! n a005867_list = scanl (*) 1 a006093_list -- Reinhard Zumkeller, May 01 2013
-
Maple
A005867 := proc(n) mul(ithprime(j)-1,j=1..n) ; end proc: # Zerinvary Lajos, Aug 24 2008, R. J. Mathar, May 03 2017
-
Mathematica
Table[ Product[ EulerPhi[ Prime[ j ] ], {j, 1, n} ], {n, 1, 20} ] RecurrenceTable[{a[0]==1,a[n]==(Prime[n]-1)a[n-1]},a,{n,20}] (* Harvey P. Dale, Dec 09 2013 *) EulerPhi@ FoldList[Times, 1, Prime@ Range@ 18] (* Michael De Vlieger, Mar 18 2016 *)
-
PARI
for(n=0, 22, print1(prod(k=1,n, prime(k)-1), ", "))
Formula
a(n) = Product_{k=1..n} (prime(k)-1) = Product_{k=1..n} A006093(n).
Sum_{n>=0} a(n)/A002110(n+1) = 1. - Bob Selcoe, Jan 09 2015
a(n) = A002110(n)-((1/A000040(n+1) - A038110(n+1)/A038111(n+1))*A002110(n+1)). - Jamie Morken, Mar 27 2019
a(n) = |Sum_{k=0..n} A070918(n,k)|. - Alois P. Heinz, Aug 18 2019
Sum_{n>=0} 1/a(n) = A345974. - Amiram Eldar, Jun 26 2025
Extensions
Offset changed to 0, Name changed, and Comments and Examples sections edited by T. D. Noe, Apr 04 2010
Comments