A006094 Products of 2 successive primes.
6, 15, 35, 77, 143, 221, 323, 437, 667, 899, 1147, 1517, 1763, 2021, 2491, 3127, 3599, 4087, 4757, 5183, 5767, 6557, 7387, 8633, 9797, 10403, 11021, 11663, 12317, 14351, 16637, 17947, 19043, 20711, 22499, 23707, 25591, 27221, 28891, 30967, 32399, 34571, 36863
Offset: 1
References
- H. E. Huntley, The Divine Proportion, A Study in Mathematical Beauty. New York: Dover, 1970. See Chapter 13, Spira Mirabilis, especially Fig. 13-5, page 173.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- A. Bernoff and R. Pennington, Problems Drive 1984, Archimedeans Problems Drive, Eureka, 45 (1985), 22-25, 50. (Annotated scanned copy)
- C. Cobeli and A. Zaharescu, A game with divisors and absolute differences of exponents, Journal of Difference Equations and Applications, Vol. 20, #11 (2014) pp. 1489-1501, DOI: 10.1080/10236198.2014.940337. Also available as arXiv:1411.1334 [math.NT], 2014.
Crossrefs
Programs
-
Haskell
a006094 n = a006094_list !! (n-1) a006094_list = zipWith (*) a000040_list a065091_list -- Reinhard Zumkeller, Mar 13 2011
-
Haskell
a006094_list = pr a000040_list where pr (n:m:tail) = n*m : pr (m:tail) pr _ = [] -- Jean-François Antoniotti, Jan 08 2020
-
Magma
[NthPrime(n)*NthPrime(n+1): n in [1..41]]; // Bruno Berselli, Feb 24 2011
-
Maple
a:= n-> (p-> p(n)*p(n+1))(ithprime): seq(a(n), n=1..43); # Alois P. Heinz, Jan 02 2021
-
Mathematica
Table[ Prime[n] Prime[n + 1], {n, 40}] (* Robert G. Wilson v, Jan 22 2004 *) Times@@@Partition[Prime[Range[60]], 2, 1] (* Harvey P. Dale, Oct 15 2011 *)
-
MuPAD
ithprime(i)*ithprime(i+1) $ i = 1..41 // Zerinvary Lajos, Feb 26 2007
-
PARI
g(n) = for(x=1,n,print1(prime(x)*prime(x+1)",")) \\ Cino Hilliard, Jul 28 2006
-
PARI
is(n)=my(p=precprime(sqrtint(n))); p>1 && n%p==0 && isprime(n/p) && nextprime(p+1)==n/p \\ Charles R Greathouse IV, Jun 04 2014
-
Python
from sympy import prime, primerange def aupton(nn): alst, prevp = [], 2 for p in primerange(3, prime(nn+1)+1): alst.append(prevp*p); prevp = p return alst print(aupton(43)) # Michael S. Branicky, Jun 15 2021
-
Python
from sympy import prime, nextprime def A006094(n): return (p:=prime(n))*nextprime(p) # Chai Wah Wu, Oct 18 2024
Formula
A209329 = Sum_{n>=2} 1/a(n). - M. F. Hasler, Jan 22 2013
Comments