A228365
Inverse binomial transform of the Galois numbers G_(n)^{(3)} (A006117).
Original entry on oeis.org
1, 1, 3, 15, 129, 1833, 43347, 1705623, 112931553, 12639552945, 2413134909507, 788041911546303, 442817851480763169, 428369525248261655193, 716160018275094098267859, 2067365673240491189928496263, 10333740296321620864171488891201, 89302459853776656431139970491341025
Offset: 0
-
b:= proc(n) option remember; add(mul(
(3^(i+k)-1)/(3^i-1), i=1..n-k), k=0..n)
end:
a:= proc(n) option remember;
add(b(n-j)*binomial(n, j)*(-1)^j, j=0..n)
end:
seq(a(n), n=0..19); # Alois P. Heinz, Sep 24 2019
-
Table[SeriesCoefficient[Sum[x^n/Product[(1-(3^k-1)*x),{k,0,n}],{n,0,nn}],{x,0,nn}] ,{nn,0,20}] (* Vaclav Kotesovec, Aug 23 2013 *)
A022167
Triangle of Gaussian binomial coefficients [ n,k ] for q = 3.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 40, 130, 40, 1, 1, 121, 1210, 1210, 121, 1, 1, 364, 11011, 33880, 11011, 364, 1, 1, 1093, 99463, 925771, 925771, 99463, 1093, 1, 1, 3280, 896260, 25095280, 75913222, 25095280, 896260, 3280, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 4, 1;
1, 13, 13, 1;
1, 40, 130, 40, 1;
1, 121, 1210, 1210, 121, 1;
1, 364, 11011, 33880, 11011, 364, 1;
1, 1093, 99463, 925771, 925771, 99463, 1093, 1;
1, 3280, 896260, 25095280, 75913222, 25095280, 896260, 3280, 1;
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
- T. D. Noe, Rows n = 0..50 of triangle, flattened
- R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
- Index entries for sequences related to Gaussian binomial coefficients
-
A022167 := proc(n,m)
A027871(n)/A027871(n-m)/A027871(m) ;
end proc:
seq(seq(A022167(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Nov 14 2011
-
p[n_] := Product[3^k-1, {k, 1, n}]; t[n_, m_] := p[n]/(p[n-m]*p[m]); Table[t[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 10 2014, after R. J. Mathar *)
Table[QBinomial[n, k, 3], {n, 0, 10}, {k, 0, n}] // Flatten
(* or, after Vladimir Kruchinin, using S for qStirling2: *)
S[n_, k_, q_] /; 1 <= k <= n := S[n-1, k-1, q] + Sum[q^j, {j, 0, k-1}]* S[n-1, k, q]; S[n_, 0, ] := KroneckerDelta[n, 0]; S[0, k, ] := KroneckerDelta[0, k]; S[, , ] = 0;
T[n_, k_] /; n >= k := Sum[Binomial[n, j]*S[n-j, n-k, q]*(q-1)^(k-j) /. q -> 3, {j, 0, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 08 2020 *)
A015195
Sum of Gaussian binomial coefficients for q=9.
Original entry on oeis.org
1, 2, 12, 184, 9104, 1225248, 540023488, 652225844096, 2584219514040576, 28081351726592246272, 1001235747932175990213632, 97915621602690773814148184064, 31420034518763282871588038742544384, 27654326463468067495668136467306727743488
Offset: 0
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
-
Total/@Table[QBinomial[n, m, 9], {n, 0, 20}, {m, 0, n}] (* Vincenzo Librandi, Nov 01 2012 *)
Flatten[{1,RecurrenceTable[{a[n]==2*a[n-1]+(9^(n-1)-1)*a[n-2],a[0]==1,a[1]==2},a,{n,1,15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
A015196
Sum of Gaussian binomial coefficients for q=10.
Original entry on oeis.org
1, 2, 13, 224, 13435, 2266646, 1348019857, 2269339773068, 13484735901526279, 226960944509263279490, 13485189809930561625032701, 2269636415245291711513986785912, 1348523520252401463276762566348539123
Offset: 0
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
-
Total/@Table[QBinomial[n, m, 10], {n, 0, 20}, {m, 0, n}] (* Vincenzo Librandi, Nov 01 2012 *)
Flatten[{1,RecurrenceTable[{a[n]==2*a[n-1]+(10^(n-1)-1)*a[n-2],a[0]==1,a[1]==2},a,{n,1,15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
A228465
Recurrence a(n) = a(n-1) + 2^n*a(n-2) with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 1, 9, 25, 313, 1913, 41977, 531705, 22023929, 566489849, 45671496441, 2366013917945, 376506912762617, 39141278944373497, 12376519796349807353, 2577539376694811306745, 1624792742123856760679161, 677311275106408471956040441, 852536648457739021814912002809
Offset: 0
-
[n le 2 select (n-1) else Self(n-1)+Self(n-2)*2^(n-1): n in [1..20]]; // Vincenzo Librandi, Aug 23 2013
-
RecurrenceTable[{a[n]==a[n-1]+2^n*a[n-2],a[0]==0,a[1]==1},a,{n,0,20}]
(* Alternative: *)
a[n_] := Sum[2^(k^2-1) QBinomial[n - k , k - 1, 2], {k, 1, n}];
Table[a[n], {n, 0, 19}] (* After Vladimir Kruchinin. Peter Luschny, Jan 20 2020 *)
-
def a(n):
return sum(2^(k^2 - 1)*q_binomial(n-k , k-1, 2) for k in (1..n))
print([a(n) for n in range(20)]) # Peter Luschny, Jan 20 2020
A015197
Sum of Gaussian binomial coefficients for q=11.
Original entry on oeis.org
1, 2, 14, 268, 19156, 3961832, 3092997464, 7024809092848, 60287817008722576, 1505950784990730735392, 142158530752430089391520224, 39060769254069395008311334483648, 40559566021977397260316290099710383936
Offset: 0
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
-
Total/@Table[QBinomial[n, m, 11], {n, 0, 20}, {m, 0, n}] (* Vincenzo Librandi, Nov 02 2012 *)
Flatten[{1,RecurrenceTable[{a[n]==2*a[n-1]+(11^(n-1)-1)*a[n-2],a[0]==1,a[1]==2},a,{n,1,15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
A174527
Triangle T(n,m) = 2*A022167(n,m) - binomial(n, m), 0 <= m <= n, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 23, 23, 1, 1, 76, 254, 76, 1, 1, 237, 2410, 2410, 237, 1, 1, 722, 22007, 67740, 22007, 722, 1, 1, 2179, 198905, 1851507, 1851507, 198905, 2179, 1, 1, 6552, 1792492, 50190504, 151826374, 50190504, 1792492, 6552, 1, 1, 19673, 16139204
Offset: 0
Triangle begins
1;
1, 1;
1, 6, 1;
1, 23, 23, 1;
1, 76, 254, 76, 1;
1, 237, 2410, 2410, 237, 1;
1, 722, 22007, 67740, 22007, 722, 1;
1, 2179, 198905, 1851507, 1851507, 198905, 2179, 1;
1, 6552, 1792492, 50190504, 151826374, 50190504, 1792492, 6552, 1;
-
A174527 := proc(n,k)
2*A022167(n,k)-binomial(n,k) ;
end proc:
seq(seq(A174527(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Nov 14 2011
-
c[n_, q_] = Product[1 - q^i, {i, 1, n}];
t[n_, m_, q_] = 2*c[n, q]/(c[m, q]*c[n - m, q]) - Binomial[n, m];
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]
A348102
a(n) is the number of vector subspaces in (F_3)^n, counted up to coordinate permutation.
Original entry on oeis.org
1, 2, 5, 12, 34, 102, 374, 1680, 10271, 91878, 1308856, 31048616, 1243411976, 83446254312, 9312844044030, 1715236203607456
Offset: 0
A370887
Square array read by descending antidiagonals: T(n,k) is the number of subgroups of the elementary abelian group of order A000040(k)^n for n >= 0 and k >= 1.
Original entry on oeis.org
1, 1, 2, 1, 2, 5, 1, 2, 6, 16, 1, 2, 8, 28, 67, 1, 2, 10, 64, 212, 374, 1, 2, 14, 116, 1120, 2664, 2825, 1, 2, 16, 268, 3652, 42176, 56632, 29212, 1, 2, 20, 368, 19156, 285704, 3583232, 2052656, 417199, 1, 2, 22, 616, 35872, 3961832, 61946920, 666124288
Offset: 0
T(1,1) = 2 since the elementary abelian of order A000040(1)^1 = 2^1 has 2 subgroups.
T(3,5) = 2*T(2,5) + (A000040(5)^(3-1)-1)*T(1,5) = 2*14 + ((11^2)-1)*2 = 268.
First 6 rows and 8 columns:
n\k| 1 2 3 4 5 6 7 8
----+---------------------------------------------------------------------------
0 | 1 1 1 1 1 1 1 1
1 | 2 2 2 2 2 2 2 2
2 | 5 6 8 10 14 16 20 22
3 | 16 28 64 116 268 368 616 764
4 | 67 212 1120 3652 19156 35872 99472 152404
5 | 374 2664 42176 285704 3961832 10581824 51647264 99869288
6 |2825 56632 3583232 61946920 3092997464 13340150272 141339210560 377566978168
-
# produces an array A of the first (7(7+1))/2 terms. However computation quickly becomes expensive for values > 7.
LoadPackage("sonata"); # sonata package needs to be loaded to call function Subgroups. Sonata is included in latest versions of GAP.
N:=[1..7];; R:=[];; S:=[];;
for i in N do
for j in N do
if j>i then
break;
fi;
Add(R,j);
od;
Add(S,R);
R:=[];;
od;
A:=[];;
for n in N do
L:=List([1..Length(S[n])],m->Size(Subgroups(ElementaryAbelianGroup( Primes[Reversed(S[n])[m]]^(S[n][m]-1)))));
Add(A,L);
od;
A:=Flat(A);
-
T(n,k)=polcoeff(sum(i=0,n,x^i/prod(j=0,i,1-primes(k)[k]^j*x+x*O(x^n))),n)
Showing 1-9 of 9 results.
Comments