A006335 a(n) = 4^n*(3*n)!/((n+1)!*(2*n+1)!).
1, 2, 16, 192, 2816, 46592, 835584, 15876096, 315031552, 6466437120, 136383037440, 2941129850880, 64614360416256, 1442028424527872, 32619677465182208, 746569714888605696, 17262927525017812992, 402801642250415636480, 9474719710174783733760, 224477974671833337692160
Offset: 0
Examples
G.f. = 1 + 2*x + 16*x^2 + 192*x^3 + 2816*x^4+ 46592*x^5 + 835584*x^6 + ...
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..700
- Andrei Asinowski, Cyril Banderier, and Sarah J. Selkirk, From Kreweras to Gessel: A walk through patterns in the quarter plane, Séminaire Lotharingien de Combinatoire, Proc. 35th Conf. Formal Power Series and Alg. Comb. (Davis, 2023) Vol. 89B, Art. #30.
- Olivier Bernardi, Bijective counting of Kreweras walks and loopless triangulations, Journal of Combinatorial Theory, Series A 114:5 (2007), 931-956.
- M. Bousquet-Mélou, Walks in the quarter plane: Kreweras' algebraic model, arXiv:math/0401067 [math.CO], 2004-2006.
- M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008.
- Sam Hopkins and Martin Rubey, Promotion of Kreweras words, arXiv:2005.14031 [math.CO], 2020.
- G. Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, 6 (1965), circa p. 82.
- G. Kreweras and H. Niederhausen, Solution of an enumerative problem connected with lattice paths, European J. Combin., 2 (1981), 55-60.
Crossrefs
Programs
-
Magma
[4^n*Factorial(3*n)/(Factorial(n+1)*Factorial(2*n+1)) : n in [0..20]]; // Wesley Ivan Hurt, Nov 16 2014
-
Maple
A006335:=n->4^n*(3*n)!/((n+1)!*(2*n+1)!): seq(A006335(n), n=0..20); # Wesley Ivan Hurt, Nov 16 2014
-
Mathematica
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, 3 n], {n, 0, 25}] (* Manuel Kauers, Nov 18 2008 *) Table[(4^n (3 n)! / ((n + 1)! (2 n + 1)!)), {n, 0, 200}] (* Vincenzo Librandi, Nov 17 2014 *)
-
PARI
{a(n) = if( n<0, 0, 4^n * (3*n)! / ((n+1)! * (2*n+1)!))}; /* Michael Somos, Jan 23 2003 */
-
Sage
def a(n): return (4**n * binomial(3 * n, 2 * n)) // ((n + 1) * (2 * n + 1)) # F. Chapoton, Jun 01 2020
Formula
G.f.: (1/(12*x)) * (hypergeom([ -2/3, -1/3],[1/2],27*x)-1). - Mark van Hoeij, Nov 02 2009
a(n+1) = 6*(3*n+2)*(3*n+1)*a(n)/((2+n)*(2*n+3)). - Robert Israel, Nov 17 2014
a(n) ~ 3^(3*n + 1/2) / (4*sqrt(Pi)*n^(5/2)). - Vaclav Kotesovec, Mar 26 2016
E.g.f.: 2F2(1/3,2/3; 3/2,2; 27*x). - Ilya Gutkovskiy, Jan 25 2017
Extensions
Edited by N. J. A. Sloane, Dec 20 2008 at the suggestion of R. J. Mathar
Comments