cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006522 4-dimensional analog of centered polygonal numbers. Also number of regions created by sides and diagonals of a convex n-gon in general position.

Original entry on oeis.org

1, 0, 0, 1, 4, 11, 25, 50, 91, 154, 246, 375, 550, 781, 1079, 1456, 1925, 2500, 3196, 4029, 5016, 6175, 7525, 9086, 10879, 12926, 15250, 17875, 20826, 24129, 27811, 31900, 36425, 41416, 46904, 52921, 59500, 66675, 74481, 82954, 92131
Offset: 0

Views

Author

Keywords

Comments

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=5, a(n)=coeff(charpoly(A,x),x^(n-4)). - Milan Janjic, Jan 24 2010
From Ant King, Sep 14 2011: (Start)
Consider the array formed by the polygonal numbers of increasing rank A139600
0, 1, 3, 6, 10, 15, 21, 28, 36, 45, ... A000217(n)
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, ... A000290(n)
0, 1, 5, 12, 22, 35, 51, 70, 92, 117, ... A000326(n)
0, 1, 6, 15, 28, 45, 66, 91, 120, 153, ... A000384(n)
0, 1, 7, 18, 34, 55, 81, 112, 148, 189, ... A000566(n)
0, 1, 8, 21, 40, 65, 96, 133, 176, 225, ... A000567(n)
...
Then, for n>=2, a(n) is the diagonal sum of this polygonal grid.
(End)
Binomial transform of (1, -1, 1, 0, 1, 0, 0, 0, ...). - Gary W. Adamson, Aug 26 2015

Examples

			For a pentagon in general position, 11 regions are formed (Comtet, Fig. 20, p. 74).
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 8.
  • Ross Honsberger, Mathematical Gems, M.A.A., 1973, p. 102.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A004006.

Programs

  • Magma
    [Binomial(n, 4)+Binomial(n-1, 2): n in [0..40]]; // Vincenzo Librandi, Jun 09 2013
    
  • Maple
    A006522 := n->(1/24)*(n-1)*(n-2)*(n^2-3*n+12):
    seq(A006522(n), n=0..40);
    A006522:=-(1-z+z**2)/(z-1)**5; # Simon Plouffe in his 1992 dissertation; gives sequence except for three leading terms
  • Mathematica
    a=2;b=3;s=4;lst={1,0,0,1,s};Do[a+=n;b+=a;s+=b;AppendTo[lst,s],{n,2,6!,1}];lst (* Vladimir Joseph Stephan Orlovsky, May 24 2009 *)
    Table[Binomial[n,4]+Binomial[n-1,2],{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,0,0,1,4},40] (* Harvey P. Dale, Jul 11 2011 *)
    CoefficientList[Series[-(((x - 1) x (x (4 x - 5) + 5) + 1) / (x - 1)^5), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
    a[n_] := If[n==0, 1, Sum[PolygonalNumber[n-k+1, k], {k, 0, n-2}]];
    a /@ Range[0, 40] (* Jean-François Alcover, Jan 21 2020 *)
  • PARI
    a(n)=1/24*n^4 - 1/4*n^3 + 23/24*n^2 - 7/4*n + 1 \\ Charles R Greathouse IV, Feb 09 2017

Formula

a(n) = binomial(n,4) + binomial(n-1,2) = A000332(n) + A000217(n-2).
a(n) = binomial(n-1,2) + binomial(n-1,3) + binomial(n-1,4). - Zerinvary Lajos, Jul 23 2006
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=1, a(1)=0, a(2)=0, a(3)=1, a(4)=4. - Harvey P. Dale, Jul 11 2011
G.f.: -((x-1)*x*(x*(4*x-5)+5)+1)/(x-1)^5. - Harvey P. Dale, Jul 11 2011
a(n) = (n^4 - 6*n^3 + 23*n^2 - 42*n + 24)/24. - T. D. Noe, Oct 16 2013
For odd n, a(n) = A007678(n). - R. J. Mathar, Nov 22 2017
a(n) = a(3-n) for all n in Z. - Michael Somos, Nov 23 2021
Sum_{n>=3} 1/a(n) = 66/25 - (4/5)*sqrt(3/13)*Pi*tanh(sqrt(39)*Pi/2). - Amiram Eldar, Aug 23 2022