A133402 Hankel transform of A006588.
1, 96, 405504, 77007421440, 661630022502580224, 257876005135691663309537280, 4565900567740737406606787243126292480, 3675506444195600567841408683430769715388692299776
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
[2^n*Factorial(3*n)/(Factorial(n)*Factorial(2*n)): n in [0..20]]; // Vincenzo Librandi, Aug 24 2013
a := n -> 2^n*binomial(3*n, n): seq(a(n), n=0..16);
Table[2^n (3 n)!/(n! (2 n)!), {n, 0, 20}] (* Vincenzo Librandi, Aug 24 2013 *)
a(n) = 2^n*binomial(3*n, 2*n); \\ Michel Marcus, Mar 06 2022
A006587:= func< n | 3*4^n*Binomial(3*n,n) >; [A006587(n): n in [0..40]]; // G. C. Greubel, Aug 27 2025
A006587:=n->3*2^(2*n)*(3*n)!/((2*n)!*n!); seq(A006587(n), n=0..50); # Wesley Ivan Hurt, Nov 23 2013
Table[3*2^(2n)(3n)!/((2n)!*n!), {n, 0, 50}] (* Wesley Ivan Hurt, Nov 23 2013 *)
a(n)=3*binomial(3*n,n)*4^n \\ Charles R Greathouse IV, Aug 11 2017
def A006587(n): return 3*4**n*binomial(3*n,n) print([A006587(n) for n in range(41)]) # G. C. Greubel, Aug 27 2025
0.488602511902919921586384622
RealDigits[1/2 Sqrt[3/Pi],10,120][[1]] (* Harvey P. Dale, Jul 11 2017 *)
sqrt(3)/(2*sqrt(Pi)) \\ Michel Marcus, Jun 05 2020
a[n_] := n^2 * 4^n * Binomial[3*n, n]; Array[a, 25, 0]
a(n) = n^2 * 4^n * binomial(3*n, n);
Comments