cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A133402 Hankel transform of A006588.

Original entry on oeis.org

1, 96, 405504, 77007421440, 661630022502580224, 257876005135691663309537280, 4565900567740737406606787243126292480, 3675506444195600567841408683430769715388692299776
Offset: 0

Views

Author

Paul Barry, Jan 08 2008

Keywords

Formula

a(n)=4^(n(n+1))*A127636(n); a(n)=A000244(n)*A051255(n)*A053765(n+1);

A228484 a(n) = 2^n*(3*n)!/(n!*(2*n)!).

Original entry on oeis.org

1, 6, 60, 672, 7920, 96096, 1188096, 14883840, 188280576, 2399654400, 30766095360, 396363202560, 5126871859200, 66538909237248, 866061993246720, 11300615801536512, 147773778404769792, 1936073567335219200, 25408660721789829120, 333963051307735449600
Offset: 0

Views

Author

Johannes W. Meijer, Aug 22 2013

Keywords

Comments

Oblique diagonal of the Pell-Jacobsthal triangle A013609. Its mirror diagonal is A006588.

Crossrefs

Programs

  • Magma
    [2^n*Factorial(3*n)/(Factorial(n)*Factorial(2*n)): n in [0..20]]; // Vincenzo Librandi, Aug 24 2013
    
  • Maple
    a := n -> 2^n*binomial(3*n, n): seq(a(n), n=0..16);
  • Mathematica
    Table[2^n (3 n)!/(n! (2 n)!), {n, 0, 20}] (* Vincenzo Librandi, Aug 24 2013 *)
  • PARI
    a(n) = 2^n*binomial(3*n, 2*n); \\ Michel Marcus, Mar 06 2022

Formula

a(n) = 2^n*A005809(n).
a(n) = A013609(3*n, n).
a(n) = A006588(n)/2^n.
a(n) = (2*n+1)*A153231(n).
Asymptotic approximation of a(n) ~ C*(13.5)^n/sqrt(n) with C = (1/2)*sqrt(3/Pi) = A137209.
Sum_{n>=0} 1/a(n) = (11*Pi - 12*log(2) + 270)/250. - Amiram Eldar, Mar 06 2022
From Karol A. Penson, Feb 26 2025: (Start)
G.f.: hypergeom([1/3,2/3],[1/2],27*z/2).
E.g.f.: hypergeom([1/3,2/3],[1/2,1],27*z/2). (End)

Extensions

More terms from Vincenzo Librandi, Aug 24 2013

A006587 a(n) = 3*2^(2*n)*(3*n)!/((2*n)!*n!).

Original entry on oeis.org

3, 36, 720, 16128, 380160, 9225216, 228114432, 5715394560, 144599482368, 3685869158400, 94513444945920, 2435255516528640, 62999001405849600, 1635260233414606848, 42568679092062781440, 1110895735754245275648
Offset: 0

Views

Author

Keywords

References

  • W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 35.

Crossrefs

Cf. A006588.

Programs

Formula

From G. C. Greubel, Aug 27 2025: (Start)
a(n) = 3 * A006588(n).
G.f.: 3*hypergeometric2F1([1/3, 2/3], [1/2], 27*x) = (3/(2*(1-27*x))*( cos(t) + cos(2*t) ), where t = (1/3)*arccos(1-54*x).
E.g.f.: 3*hypergeometric2F2([1/3, 2/3], [1/2, 1], 27*x). (End)

A137209 Decimal expansion of (1/2)*sqrt(3/Pi).

Original entry on oeis.org

4, 8, 8, 6, 0, 2, 5, 1, 1, 9, 0, 2, 9, 1, 9, 9, 2, 1, 5, 8, 6, 3, 8, 4, 6, 2, 2, 8, 3, 8, 3, 4, 7, 0, 0, 4, 5, 7, 5, 8, 8, 5, 6, 0, 8, 1, 9, 4, 2, 2, 7, 7, 0, 2, 1, 3, 8, 2, 4, 3, 1, 5, 7, 4, 4, 5, 8, 4, 1, 0, 0, 0, 3, 6, 1, 6, 3, 6, 5, 3, 0, 4, 0, 5, 6, 1, 4, 8, 1, 8, 7, 0, 3, 9, 7, 0, 0, 4, 2, 4, 1, 5, 7, 6, 4
Offset: 0

Views

Author

Zak Seidov, Mar 05 2008

Keywords

Comments

Decimal expansion of the radius x (in units of cube edge length) of sphere with volume x (in units of cube volume).
Appears in the asymptotic expansions of A228484 and A006588. - Johannes W. Meijer, Aug 22 2013

Examples

			0.488602511902919921586384622
		

Crossrefs

Cf. A135691.

Programs

  • Mathematica
    RealDigits[1/2 Sqrt[3/Pi],10,120][[1]] (* Harvey P. Dale, Jul 11 2017 *)
  • PARI
    sqrt(3)/(2*sqrt(Pi)) \\ Michel Marcus, Jun 05 2020

A378779 a(n) = n^2 * 4^n * binomial(3*n, n).

Original entry on oeis.org

0, 12, 960, 48384, 2027520, 76876800, 2737373184, 93351444480, 3084788957184, 99518467276800, 3150448164864000, 98221972499988480, 3023952067480780800, 92119659815689519104, 2781153700681435054080, 83317180181568395673600, 2479232599432958230659072, 73338095004533174933913600
Offset: 0

Views

Author

Amiram Eldar, Dec 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n^2 * 4^n * Binomial[3*n, n]; Array[a, 25, 0]
  • PARI
    a(n) = n^2 * 4^n * binomial(3*n, n);

Formula

a(n) = A128782(n) * A005809(n).
a(n) = n^2 * A006588(n).
a(n) == 0 (mod 12).
Sum_{n>=1} (-1)^n/a(n) = 6 * arccot(2*sqrt(3)+sqrt(7))^2 - log(2)^2/2 (Batir, 2005, p. 379, eq. (3.8)).
Showing 1-5 of 5 results.