cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006590 a(n) = Sum_{k=1..n} ceiling(n/k).

Original entry on oeis.org

1, 3, 6, 9, 13, 16, 21, 24, 29, 33, 38, 41, 48, 51, 56, 61, 67, 70, 77, 80, 87, 92, 97, 100, 109, 113, 118, 123, 130, 133, 142, 145, 152, 157, 162, 167, 177, 180, 185, 190, 199, 202, 211, 214, 221, 228, 233, 236, 247, 251, 258, 263, 270, 273, 282, 287, 296, 301
Offset: 1

Views

Author

Keywords

Comments

The following sequences all have the same parity: A004737, A006590, A027052, A071028, A071797, A078358, A078446. - Jeremy Gardiner, Mar 16 2003
Given the fact that ceiling(x) <= x+1, we can, using well known results for the harmonic series, easily derive that n*log(n) <= a(n) <= n*(1+log(n)) + n = n(log(n)+2). - Stefan Steinerberger, Apr 08 2006

References

  • Marc LeBrun, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006590 n = sum $ map f [1..n] where
       f x = y + 1 - 0 ^ r where (y, r) = divMod n x
    -- Reinhard Zumkeller, Feb 18 2013
    
  • Magma
    [&+[Ceiling(n/j): j in [1..n]] : n in [1..60]]; // G. C. Greubel, Nov 07 2019
    
  • Maple
    seq(add(ceil(n/j), j = 1..n), n = 1..60); # G. C. Greubel, Nov 07 2019
  • Mathematica
    Table[Sum[Ceiling[n/i], {i, 1, n}], {n, 1, 60}] (* Stefan Steinerberger, Apr 08 2006 *)
    nxt[{n_,a_}]:={n+1,a+DivisorSigma[0,n]+1}; Transpose[NestList[nxt,{1,1},60]][[2]] (* Harvey P. Dale, Aug 23 2013 *)
  • PARI
    first(n)=my(v=vector(n,i,i),s); for(i=1,n-1,v[i+1]+=s+=numdiv(i)); v \\ Charles R Greathouse IV, Feb 07 2017
    
  • PARI
    a(n) = n + sum(k=1, n-1, (n-1)\k); \\ Michel Marcus, Oct 10 2021
    
  • Python
    from math import isqrt
    def A006590(n): return (lambda m: n+2*sum((n-1)//k for k in range(1, m+1))-m*m)(isqrt(n-1)) # Chai Wah Wu, Oct 09 2021
  • Sage
    [sum(ceil(n/j) for j in (1..n)) for n in (1..60)] # G. C. Greubel, Nov 07 2019
    

Formula

a(n) = n+Sum_{k=1..n-1} tau(k). - Vladeta Jovovic, Oct 17 2002
a(n) = 1 + a(n-1) + tau(n-1), a(n) = A006218(n-1) + n. - T. D. Noe, Jan 05 2007
a(n) = a(n-1) + A000005(n) + 1 for n >= 2. a(n) = A161886(n) - A000005(n) + 1 = A161886(n-1) + 2 = A006218(n) + A049820(n) for n >= 1. - Jaroslav Krizek, Nov 14 2009

Extensions

More terms from Stefan Steinerberger, Apr 08 2006