A006590 a(n) = Sum_{k=1..n} ceiling(n/k).
1, 3, 6, 9, 13, 16, 21, 24, 29, 33, 38, 41, 48, 51, 56, 61, 67, 70, 77, 80, 87, 92, 97, 100, 109, 113, 118, 123, 130, 133, 142, 145, 152, 157, 162, 167, 177, 180, 185, 190, 199, 202, 211, 214, 221, 228, 233, 236, 247, 251, 258, 263, 270, 273, 282, 287, 296, 301
Offset: 1
References
- Marc LeBrun, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- M. Le Brun, Email to N. J. A. Sloane, Jul 1991
Programs
-
Haskell
a006590 n = sum $ map f [1..n] where f x = y + 1 - 0 ^ r where (y, r) = divMod n x -- Reinhard Zumkeller, Feb 18 2013
-
Magma
[&+[Ceiling(n/j): j in [1..n]] : n in [1..60]]; // G. C. Greubel, Nov 07 2019
-
Maple
seq(add(ceil(n/j), j = 1..n), n = 1..60); # G. C. Greubel, Nov 07 2019
-
Mathematica
Table[Sum[Ceiling[n/i], {i, 1, n}], {n, 1, 60}] (* Stefan Steinerberger, Apr 08 2006 *) nxt[{n_,a_}]:={n+1,a+DivisorSigma[0,n]+1}; Transpose[NestList[nxt,{1,1},60]][[2]] (* Harvey P. Dale, Aug 23 2013 *)
-
PARI
first(n)=my(v=vector(n,i,i),s); for(i=1,n-1,v[i+1]+=s+=numdiv(i)); v \\ Charles R Greathouse IV, Feb 07 2017
-
PARI
a(n) = n + sum(k=1, n-1, (n-1)\k); \\ Michel Marcus, Oct 10 2021
-
Python
from math import isqrt def A006590(n): return (lambda m: n+2*sum((n-1)//k for k in range(1, m+1))-m*m)(isqrt(n-1)) # Chai Wah Wu, Oct 09 2021
-
Sage
[sum(ceil(n/j) for j in (1..n)) for n in (1..60)] # G. C. Greubel, Nov 07 2019
Formula
a(n) = n+Sum_{k=1..n-1} tau(k). - Vladeta Jovovic, Oct 17 2002
Extensions
More terms from Stefan Steinerberger, Apr 08 2006
Comments