cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A331524 a(n) is the least positive k such that A006686(n) - k^8 is an eighth power.

Original entry on oeis.org

1, 1, 1, 5, 3, 7, 2, 8, 3, 8, 9, 13, 4, 4, 17, 7, 17, 2, 8, 3, 5, 20, 7, 11, 17, 8, 23, 19, 10, 20, 3, 11, 17, 10, 22, 19, 14, 22, 17, 21, 25, 11, 13, 23, 27, 8, 32, 25, 33, 6, 25, 35, 7, 23, 31, 10, 37, 16, 18, 39, 5, 7, 42, 41, 30, 36, 5, 11, 8, 18, 30, 36
Offset: 1

Views

Author

Rémy Sigrist, Jan 19 2020

Keywords

Examples

			The first terms, alongside A006686(n), are:
  n   a(n)  A006686(n)
  --  ----  -----------------------
   1     1           2 = 1^8 +  1^8
   2     1         257 = 1^8 +  2^8
   3     1       65537 = 1^8 +  4^8
   4     5     2070241 = 5^8 +  6^8
   5     3   100006561 = 3^8 + 10^8
   6     7   435746497 = 7^8 + 12^8
   7     2   815730977 = 2^8 + 13^8
   8     8   832507937 = 8^8 + 13^8
   9     3  1475795617 = 3^8 + 14^8
  10     8  2579667841 = 8^8 + 15^8
		

Crossrefs

See A331435 for similar sequences.

Programs

  • PARI
    See Links section.

A085316 Duplicate of A006686.

Original entry on oeis.org

2, 257, 65537, 2070241, 100006561, 435746497, 815730977, 832507937, 1475795617
Offset: 1

Views

Author

Keywords

A100266 Primes of the form x^16 + y^16.

Original entry on oeis.org

2, 65537, 4338014017, 2973697798081, 36054040477057, 314707907280257, 184884411482927041, 665698084159890497, 675416609183179841, 2177953490397261761, 8746361693522261761, 18492693803573123777
Offset: 1

Views

Author

T. D. Noe, Nov 11 2004

Keywords

Comments

The Mathematica program generates numbers of the form x^16 + y^16 in order of increasing magnitude; it accepts a number when it is prime.

Crossrefs

Cf. A100267 (primes of the form x^32 + y^32), A006686 (primes of the form x^8 + y^8), A002645 (primes of the form x^4 + y^4), A002313 (primes of the form x^2 + y^2).

Programs

  • Mathematica
    n=4; pwr=2^n; xmax=2; r=Range[xmax]; num=r^pwr+r^pwr; Table[While[p=Min[num]; x=Position[num, p][[1, 1]]; y=r[[x]]; r[[x]]++; num[[x]]=x^pwr+r[[x]]^pwr; If[x==xmax, xmax++; AppendTo[r, xmax+1]; AppendTo[num, xmax^pwr+(xmax+1)^pwr]]; !PrimeQ[p]]; p, {15}]
    q=16;lst={};Do[Do[p=n^q+m^q;If[PrimeQ[p],AppendTo[lst,p]],{n,0,5!}],{m,0,5!}];lst;Length[lst];Take[Union[lst],55] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2009 *)
    Union[Select[Total[#^16]&/@Tuples[Range[20],2],PrimeQ]] (* Harvey P. Dale, Nov 03 2013 *)

A100267 Primes of the form x^32 + y^32.

Original entry on oeis.org

2, 3512911982806776822251393039617, 2211377674535255285545615254209921, 476961452964007550415682034114910337, 14748002492224459115975467901357427939457
Offset: 1

Views

Author

T. D. Noe, Nov 11 2004

Keywords

Comments

The Mathematica program generates numbers of the form x^32 + y^32 in order of increasing magnitude; it accepts a number when it is prime.

Crossrefs

Cf. A100266 (primes of the form x^16 + y^16), A006686 (primes of the form x^8 + y^8), A002645 (primes of the form x^4 + y^4), A002313 (primes of the form x^2 + y^2).

Programs

  • Mathematica
    n=5; pwr=2^n; xmax=2; r=Range[xmax]; num=r^pwr+r^pwr; Table[While[p=Min[num]; x=Position[num, p][[1, 1]]; y=r[[x]]; r[[x]]++; num[[x]]=x^pwr+r[[x]]^pwr; If[x==xmax, xmax++; AppendTo[r, xmax+1]; AppendTo[num, xmax^pwr+(xmax+1)^pwr]]; !PrimeQ[p]]; p, {10}]

A111635 Smallest prime of the form x^(2^n) + y^(2^n) where x,y are distinct integers.

Original entry on oeis.org

2, 5, 17, 257, 65537, 3512911982806776822251393039617, 4457915690803004131256192897205630962697827851093882159977969339137, 1638935311392320153195136107636665419978585455388636669548298482694235538906271958706896595665141002450684974003603106305516970574177405212679151205373697500164072550932748470956551681
Offset: 0

Views

Author

Max Alekseyev, Aug 09 2005

Keywords

Comments

Is this sequence defined for all n?
From Jeppe Stig Nielsen, Sep 16 2015: (Start)
Numbers of this form are sometimes called extended generalized Fermat numbers.
If we restrict ourselves to the case y=1, we get instead the sequence A123599, therefore a(n) <= A123599(n) for all n. Can this be an equality for some n > 4?
The formula x^(2^m) + y^(2^m) also gives the decreasing chain {A000040, A002313, A002645, A006686, A100266, A100267, ...} of subsets of the prime numbers if we drop the requirement that x != y and take all primes (not just the smallest one) with m greater than some lower bound.
(End)
For more terms (the values of max(x,y)), see A291944. - Jeppe Stig Nielsen, Dec 28 2019

Crossrefs

A283019 Primes which are the sum of three nonzero 8th powers.

Original entry on oeis.org

3, 6563, 72353, 137633, 787811, 1745153, 7444673, 44726593, 49202147, 61503553, 86093443, 91858243, 100006817, 100072097, 101686177, 107444417, 143046977, 200006561, 214756067, 257412163, 300452323, 430372577, 431661313, 435812033, 447149537, 452523713, 489805633, 530372321, 744340577
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 26 2017

Keywords

Comments

Primes of form x^8 + y^8 + z^8 where x, y, z > 0.

Examples

			3 = 1^8 + 1^8 + 1^8;
6563 = 1^8 + 1^8 + 3^8;
72353 = 2^8 + 3^8 + 4^8, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 13; Select[Union[Plus @@@ (Tuples[Range[nn], {3}]^8)], # <= nn^8 && PrimeQ[#] &]
  • PARI
    list(lim)=my(v=List(),A,B,t); lim\=1; for(a=1,sqrtnint(lim-2,8), A=a^8; for(b=1,min(sqrtnint(lim-A-1,8),a), B=A+b^8; forstep(c=if(B%2,2,1),sqrtnint(lim-B,8),2, if(isprime(t=B+c^8), listput(v,t))))); Set(v) \\ Charles R Greathouse IV, Nov 05 2017

A291206 Semi-octavan primes: primes of the form x^4 + y^8.

Original entry on oeis.org

2, 17, 257, 337, 881, 1297, 2657, 6577, 10657, 14897, 16561, 28817, 65537, 65617, 66161, 80177, 83777, 149057, 160001, 166561, 260017, 280097, 331777, 391921, 394721, 411361, 463537, 596977, 614657, 621217, 847601, 1055137, 1336337, 1342897, 1682017, 1763137
Offset: 1

Views

Author

Keywords

Examples

			a(1) = 1^4 + 1^8 = 2.
a(2) = 2^4 + 1^8 = 17.
a(3) = 1^4 + 2^8 = 257.
a(4) = 3^4 + 2^8 = 337.
		

Crossrefs

Subsequence of A002645 and hence of A028916. A006686 is a subsequence.

Programs

  • Mathematica
    Take[Select[Flatten[Table[x^4+y^8,{x,40},{y,40}]],PrimeQ]//Union,40] (* Harvey P. Dale, May 01 2025 *)
  • PARI
    list(lim)=my(v=List([2]),x4,t); for(x=1, sqrtnint(lim\=1,4), x4=x^4; forstep(y=x%2+1, sqrtnint(lim-x4,8), 2, if(isprime(t=x4+y^8), listput(v, t)))); Set(v)

A290780 Half-octavan primes: primes of the form (x^8 + y^8)/2.

Original entry on oeis.org

198593, 21523361, 107182721, 407865361, 429388721, 3487882001, 11979660241, 39155495921, 84785726833, 141217650641, 141321947681, 250123401793, 253611085201, 289278699121, 391337974721, 426445714033, 426448401121
Offset: 1

Views

Author

Keywords

Examples

			a(1) = (5^8 + 3^8)/2 = 198593.
a(2) = (9^8 + 1^8)/2 = 21523361.
a(3) = (11^8 + 3^8)/2 = 107182721.
a(4) = (13^8 + 1^8)/2 = 407865361.
a(5) = (13^8 + 9^8)/2 = 429388721.
		

Crossrefs

Programs

  • Maple
    N:= 10^12: # to get all terms <= N
    sort(convert(select(isprime, {seq(seq((x^8+y^8)/2, y= (x mod 2)..min(x,floor((2*N-x^8)^(1/8))),2),x=1..floor((2*N)^(1/8)))}),list)); # Robert Israel, Aug 21 2017
  • Mathematica
    Sort[Select[Total/@(Union[Sort/@Tuples[Range[0, 50], 2]]^8)/2, PrimeQ]] (* or *) lst={};Do[If[PrimeQ[(a^8 + b^8) / 2], AppendTo[lst, (a^8 + b^8) / 2]], {a, 100}, {b, a, 100}]; Sort[lst] (* Vincenzo Librandi, Aug 21 2017 *)
  • PARI
    list(lim)=my(v=List(),x8,t); forstep(x=1,sqrtnint(lim\=1,8),2, x8=x^8; forstep(y=1,min(sqrtnint(lim-x8,8), x-1),2, if(isprime(t=(x8+y^8)/2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Aug 20 2017
Showing 1-8 of 8 results.