A006862 Euclid numbers: 1 + product of the first n primes.
2, 3, 7, 31, 211, 2311, 30031, 510511, 9699691, 223092871, 6469693231, 200560490131, 7420738134811, 304250263527211, 13082761331670031, 614889782588491411, 32589158477190044731, 1922760350154212639071, 117288381359406970983271, 7858321551080267055879091
Offset: 0
Examples
It is a universal convention that an empty product is 1 (just as an empty sum is 0), and since this sequence has offset 0, the first term is 1+1 = 2. - _N. J. A. Sloane_, Dec 02 2015
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 134.
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 211, p. 61, Ellipses, Paris 2008.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- F. Smarandache, Properties of numbers, Arizona State University Special Collections, 1973.
- I. Vardi, Computational Recreations in Mathematica, Addison-Wesley, 1991, sections 5.1 and 5.2.
- S. Wagon, Mathematica in Action, Freeman, NY, 1991, p. 35.
Links
- Derek Maciel, Table of n, a(n) for n = 0..348 (first 101 terms from T. D. Noe)
- S. W. Golomb, The evidence for Fortune's conjecture, Math. Mag. 54 (1981), 209-210.
- H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
- R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012.
- Hisanori Mishima, Factorizations of many number sequences
- Michael A. Nyblom, On the construction of a family of almost power free sequences, Fibonacci Quart. 46/47 (2008/2009), no. 4, 366-368.
- Shubhankar Paul, Ten Problems of Number Theory, International Journal of Engineering and Technical Research (IJETR), ISSN: 2321-0869, Volume-1, Issue-9, November 2013.
- Eric Weisstein's World of Mathematics, Euclid Number
- Eric Weisstein's World of Mathematics, Fortunate Prime
- R. G. Wilson v, Explicit factorizations
Crossrefs
Programs
-
Magma
[2] cat [&*PrimesUpTo(p)+1: p in PrimesUpTo(70)]; // Vincenzo Librandi, Dec 03 2015
-
Maple
with(numtheory): A006862 := proc(n) local i; if n=0 then 2 else 1+product('ithprime(i)','i'=1..n); fi; end; # second Maple program: a:= proc(n) option remember; `if`(n=0, 2, 1+ithprime(n)*(a(n-1)-1)) end: seq(a(n), n=0..20); # Alois P. Heinz, Feb 06 2021
-
Mathematica
Table[Product[Prime[k], {k, 1, n}] + 1, {n, 1, 18}] 1 + FoldList[Times, 1, Prime@ Range@ 19] (* Harvey P. Dale, Dec 02 2015 and modified by Robert G. Wilson v, Mar 25 2017 *)
-
PARI
a(n)=my(v=primes(n)); prod(i=1,#v,v[i])+1 \\ Charles R Greathouse IV, Nov 20 2012
-
Python
from sympy import primorial def A006862(n): if n == 0: return 2 else: return 1 + primorial(n) # Karl-Heinz Hofmann, Aug 21 2024
Formula
a(n) = A002110(n) + 1.
For n >= 1, a(n) = A057588(n) + 2. - Antti Karttunen, Nov 17 2024
Comments