cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 67 results. Next

A014545 Numbers k such that the k-th Euclid number A006862(k) = 1 + (Product of first k primes) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 11, 75, 171, 172, 384, 457, 616, 643, 1391, 1613, 2122, 2647, 2673, 4413, 13494, 31260, 33237, 304723, 365071, 436504, 498865, 637491
Offset: 1

Views

Author

Keywords

Examples

			a(1) = 0 because the (empty) product of 0 primes is 1, plus 1 yields the prime 2.
prime(4413) = 42209 and Primorial(4413) + 1 = 42209# + 1 is a 18241-digit prime.
prime(13494) = 145823 and Primorial(13494) + 1 = 145823# + 1 is a 63142-digit prime.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 211, p. 61, Ellipses, Paris 2008.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 114.

Crossrefs

Cf. A005234 (values of p such that 1 + product of primes <= p is prime).
Cf. A018239 (primorial plus 1 primes).

Programs

  • Maple
    P:= 1:
    p:= 1:
    count:= 0:
    for n from 1 to 1000 do
      p:= nextprime(p);
      P:= P*p;
      if isprime(P+1) then
        count:= count+1;
        A[count]:= n;
      fi
    od:
    seq(A[i], i=1..count); # Robert Israel, Nov 04 2015
  • Mathematica
    Flatten[Position[Rest[FoldList[Times,1,Prime[Range[180]]]]+1,?PrimeQ]] (* _Harvey P. Dale, May 04 2012 *) (* this program generates the first 9 positive terms of the sequence; changing the Range constant to 33237 will generate all 23 terms above, but it will take a long time to do so *)
  • PARI
    is(n)=ispseudoprime(prod(i=1,n,prime(i))+1) \\ Charles R Greathouse IV, Mar 21 2013
    
  • PARI
    P=1; n=0; forprime(p=1, 10^5, if(ispseudoprime(P+1), print1(n", ")); n=n+1; P*=p;) \\ Hans Loeblich, May 10 2019

Formula

a(n+1) = A000720(A005234(n)). - M. F. Hasler, May 31 2018

Extensions

More terms from Labos Elemer
a(21) from Arlin Anderson (starship1(AT)gmail.com), Oct 20 2000
a(22)-a(23) from Eric W. Weisstein, Mar 13 2004 (based on information in A057704)
Offset and first term changed by Altug Alkan, Nov 27 2015
a(24) from Jeppe Stig Nielsen, Aug 08 2024
a(25) from Jeppe Stig Nielsen, Sep 01 2024
a(26) from Jeppe Stig Nielsen, Sep 24 2024
a(27) from Jeppe Stig Nielsen, Nov 10 2024
a(28) from Jeppe Stig Nielsen, Aug 21 2025

A171989 a(n) = A000010(A006862(n)).

Original entry on oeis.org

1, 2, 6, 30, 210, 2310, 29464, 476928, 9671392, 222388792, 6438663000, 200560490130, 7379606916000, 299261862900000, 13004421443456272, 614231422273479360, 31727029501157817600, 1915248189055217892480, 116762424492324428512272
Offset: 0

Views

Author

Giovanni Teofilatto, Jan 21 2010

Keywords

Crossrefs

Programs

Extensions

a(1) inserted and extended beyond a(5) by R. J. Mathar, Jan 30 2010
Offset changed to 0 and a(0) prepended by Amiram Eldar, Nov 30 2024

A369246 Irregular triangle read by rows, where row n lists in ascending order all numbers k in A046316 for which k' = the n-th Euclid number, where k' stands for the arithmetic derivative, and the Euclid numbers are given by A006862. Rows of length zero are simply omitted, i.e., when A369245(n) = 0.

Original entry on oeis.org

399, 4809, 5763, 63021, 76449, 1301673, 19204051701, 421177029231, 908999759928891, 39248269334566041, 39248273246018313, 68437232802099093891, 4903038892893242229501
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2024

Keywords

Comments

All terms are multiples of 3 because for all n >= 2, A006862(n) = 1 + A002110(n) == +1 (mod 3), see A369252.
Although the first thirteen terms appear in the ascending order, this might not be true for all the later terms, if they exist.

Examples

			Rows 1..3 have no terms.
Row 4 has one term: 399 = 3 * 7 * 19, whose arithmetic derivative (see A003415) 399' is 211 = 1 + prime(4)# [= A006862(4)].
Row 5 has two terms: 4809 = 3 * 7 * 229 and 5763 = 3 * 17 * 113, with 4809' = 5763' = 2311 = 1 + prime(5)#.
Row 6 has two terms: 63021 = 3 * 7 * 3001 and 76449 = 3 * 17 * 1499, with 63021' = 76449' = 30031 = 1 + prime(6)#.
Row 7 has one term: 1301673 = 3 * 17 * 25523, whose arithmetic derivative is 510511 = 1 + prime(7)#.
Rows 8 and 9 have no terms.
Row 10 has one term: 19204051701 = 3 * 281 * 22780607, whose arithmetic derivative is 6469693231 = 1 + prime(10)#.
Row 11 has one term: 421177029231 = 3 * 7 * 20056049011, whose arithmetic derivative is 200560490131 = 1 + prime(11)#.
Row 12 has no terms.
Row 13 has one term: 908999759928891 = 3 * 727 * 416781182911, whose arithmetic derivative is 304250263527211 = 1 + prime(13)#.
Row 14 has two terms: 39248269334566041 = 3 * 8071457 * 1620866771, and 39248273246018313 = 3 * 11056387 * 1183276033, which both have arithmetic derivative 13082761331670031 = 1 + prime(14)#.
Row 15 has no terms.
Row 16 has one term: 68437232802099093891 = 3 * 7 * 3258915847719004471, whose arithmetic derivative is 32589158477190044731 = 1 + prime(16)#.
Row 17 has at least this term: 4903038892893242229501 = 3 * 17 * 96138017507710631951, whose arithmetic derivative is 1922760350154212639071 = 1 + prime(17)#.
		

Crossrefs

Subsequence of A008585 and of A046316.
Cf. A003415, A002110, A006862, A369054, A369245 (counts of solutions, length of row n), A369252.
Cf. also A366890, A369240 for similar tables.

A376416 a(n) = A276085(A006862(n)), where A276085 is the primorial base log-function, and A006862 is the Euclid numbers, one more than primorials.

Original entry on oeis.org

1, 2, 30, 6469693230, 7799922041683461553249199106329813876687996789903550945093032474868511536164700810
Offset: 0

Views

Author

Antti Karttunen, Nov 17 2024

Keywords

Comments

Numbers k such that when we apply primorial base exp function (A276086) twice to them, the results are squarefree even semiprimes, A100484 after its initial 4. See comments in A377871.
a(5)..a(8) have 976, 209, 111, 12051 decimal digits.
a(n) is a primorial for those n that are in A014545, that is, when A006862(n) is one of the primorial primes, A018239.

Crossrefs

Programs

  • PARI
    A276085(n) = { my(f = factor(n), pr=1, i=1, s=0); for(k=1, #f~, while(i <= primepi(f[k, 1])-1, pr *= prime(i); i++); s += f[k, 2]*pr); (s); };
    A376416(n) = A276085(1+prod(i=1,n,prime(i)));

Formula

a(n) = A276085(1+A002110(n)) = A276085(A276085(A100484(1+n))).
For n >= 1, A276087(a(n)) = A100484(1+n).

A281318 Number of consecutive nonprime numbers following Euclid numbers A006862.

Original entry on oeis.org

1, 3, 5, 11, 21, 15, 17, 21, 35, 59, 65, 59, 69, 45, 105, 57, 59, 107, 87, 101, 77, 149, 195, 99, 101, 231, 221, 125, 221, 189, 161, 227, 641, 237, 155, 165, 437, 237, 197, 189, 197, 381, 231, 749, 311, 771, 605, 311, 381, 291, 441, 329, 281, 275, 269, 399
Offset: 1

Views

Author

Olivier Bélot, Jan 20 2017

Keywords

Comments

For n > 1, a(n) >= prime(n), with equality if and only if A006862(n) + prime(n) + 1 is prime. Equality occurs for n=2, 3, 7, 17. Are there any others? - Robert Israel, Jan 30 2017

Examples

			a(3) = 5 because primorial p_3# = 5# = 2*3*5 = 30 thus 31 is the third Euclid number, and there are 5 consecutive nonprime numbers {32,33,34,35,36} between 31 and the next prime, 37. - _Michael De Vlieger_, Jan 20 2017
		

Crossrefs

Programs

  • Maple
    p:= 0: pn:= 1:
    for n from 1 to 100 do
      p:= nextprime(p);
    pn:= pn*p;
    A[n]:= nextprime(pn+1)-(pn+2);
    od:
    seq(A[n],n=1..100); # Robert Israel, Jan 30 2017
  • Mathematica
    Table[Function[p, NextPrime@ p - p - 1][Times @@ Prime@ Range@ n + 1], {n, 56}] (* Michael De Vlieger, Jan 20 2017 *)

Formula

NextPrime[pn# + 1] - pn# - 1

Extensions

More terms from Michael De Vlieger, Jan 20 2017

A216205 Incidences of n such that A006862(n) - n! is prime where A006862 are the Euclid numbers.

Original entry on oeis.org

0, 1, 2, 6, 8, 19, 94, 226, 2277, 2742, 2868
Offset: 0

Views

Author

Frank M Jackson, Mar 12 2013

Keywords

Examples

			a(3) = 6 because A006862(6) - 6! = 30031-720 = 29311 and is the 3rd such prime.
		

Crossrefs

Programs

  • Mathematica
    primeproduct[q_] := Product[Prime[r], {r, 1, q}]; nextterm[n_] := (p=n+1; While[!PrimeQ[primeproduct[p]+1-p!], p++]; p); Table[Nest[nextterm, 0, m], {m, 1, 5}] (* changing 5 to 10 will give all 10 terms but takes a long time *)

A261558 Euclid numbers (A006862) of the form 3*(i*i + i*j + j*j + i + j) + 1 where i and j are integers.

Original entry on oeis.org

7, 31, 211, 2311, 510511, 6469693231, 200560490131, 304250263527211, 117288381359406970983271, 7858321551080267055879091, 40729680599249024150621323471, 232862364358497360900063316880507363071, 279734996817854936178276161872067809674997231
Offset: 1

Views

Author

Altug Alkan, Nov 18 2015

Keywords

Comments

Intersection of A006862 and A202822.

Examples

			a(1) = 7 because 7 = 2*3 + 1 = 3*(1^2 + 1*0 + 0^2 + 1 + 0) + 1.
		

Crossrefs

Programs

  • PARI
    a(n) = prod(k=1, n, prime(k)) + 1;
    isA(n) = if( n<1 || (n%3 == 0), 0, 0 != sumdiv( n, d, kronecker( -3, d)));
    for(n=0, 30, if(isA(a(n)), print1(a(n), ", ")))

A267756 Indices of Euclid numbers (A006862) of the form x^2 + y^2 + z^2 where x, y and z are integers.

Original entry on oeis.org

0, 1, 4, 8, 11, 12, 13, 15, 16, 19, 22, 27, 31, 34, 35, 38, 41, 42, 46, 48, 52, 53, 56, 57, 61, 62, 64, 65, 66, 69, 70, 71, 73, 74, 76, 77, 78, 79, 80, 83, 84, 86, 87, 88, 89, 91, 93, 95, 99, 100, 103, 104, 107, 108, 111, 112, 113, 115, 116, 118, 119, 124, 128, 131, 133
Offset: 1

Views

Author

Altug Alkan, Jan 20 2016

Keywords

Comments

Corresponding Euclid numbers are 2, 3, 211, 9699691, 200560490131, 7420738134811, 304250263527211, 614889782588491411, 32589158477190044731, ...
Complement of this sequence is 2, 3, 5, 6, 7, 9, 10, 14, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 32, 33, 36, 37, 39, 40, 43, 44, 45, 47, 49, 50, 51, 54, 55, 58, 59, 60, 63, 67, 68, 72, 75, 81, 82, 85, 90, 92, 94, 96, 97, 98, 101, ...
Euclid numbers that are not of the form x^2 + y^2 + z^2 are 7, 31, 2311, 30031, 510511, 223092871, 6469693231, 13082761331670031, 1922760350154212639071, ...

Examples

			0 is a term because A006862(0) = 2 = 0^2 + 1^2 + 1^2.
1 is a term because A006862(1) = 3 = 1^2 + 1^2 + 1^2.
4 is a term because A006862(4) = 211 = 3^2 + 9^2 + 11^2.
8 is a term because A006862(8) = 9699691 = 79^2 + 123^2 + 3111^2.
		

Crossrefs

Programs

  • PARI
    isA004215(n) = { local(fouri, j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri -7 ; if( j % 8 ==0, return(1) ) ; ) ; fouri *= 4 ; ) ; return(0) ; }
    a006862(n) = prod(k=1, n, prime(k))+1;
    for(n=0, 200, if(!isA004215(a006862(n)), print1(n, ", ")));

A002110 Primorial numbers (first definition): product of first n primes. Sometimes written prime(n)#.

Original entry on oeis.org

1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070, 117288381359406970983270, 7858321551080267055879090
Offset: 0

Views

Author

Keywords

Comments

See A034386 for the second definition of primorial numbers: product of primes in the range 2 to n.
a(n) is the least number N with n distinct prime factors (i.e., omega(N) = n, cf. A001221). - Lekraj Beedassy, Feb 15 2002
Phi(n)/n is a new minimum for each primorial. - Robert G. Wilson v, Jan 10 2004
Smallest number stroked off n times after the n-th sifting process in an Eratosthenes sieve. - Lekraj Beedassy, Mar 31 2005
Apparently each term is a new minimum for phi(x)*sigma(x)/x^2. 6/Pi^2 < sigma(x)*phi(x)/x^2 < 1 for n > 1. - Jud McCranie, Jun 11 2005
Let f be a multiplicative function with f(p) > f(p^k) > 1 (p prime, k > 1), f(p) > f(q) > 1 (p, q prime, p < q). Then the record maxima of f occur at n# for n >= 1. Similarly, if 0 < f(p) < f(p^k) < 1 (p prime, k > 1), 0 < f(p) < f(q) < 1 (p, q prime, p < q), then the record minima of f occur at n# for n >= 1. - David W. Wilson, Oct 23 2006
Wolfe and Hirshberg give ?, ?, ?, ?, ?, 30030, ?, ... as a puzzle.
Records in number of distinct prime divisors. - Artur Jasinski, Apr 06 2008
For n >= 2, the digital roots of a(n) are multiples of 3. - Parthasarathy Nambi, Aug 19 2009 [with corrections by Zak Seidov, Aug 30 2015]
Denominators of the sum of the ratios of consecutive primes (see A094661). - Vladimir Joseph Stephan Orlovsky, Oct 24 2009
Where record values occur in A001221. - Melinda Trang (mewithlinda(AT)yahoo.com), Apr 15 2010
It can be proved that there are at least T prime numbers less than N, where the recursive function T is: T = N - N*Sum_{i = 0..T(sqrt(N))} A005867(i)/A002110(i). This can show for example that at least 0.16*N numbers are primes less than N for 29^2 > N > 23^2. - Ben Paul Thurston, Aug 23 2010
The above comment from Parthasarathy Nambi follows from the observation that digit summing produces a congruent number mod 9, so the digital root of any multiple of 3 is a multiple of 3. prime(n)# is divisible by 3 for n >= 2. - Christian Schulz, Oct 30 2013
The peaks (i.e., local maximums) in a graph of the number of repetitions (i.e., the tally of values) vs. value, as generated by taking the differences of all distinct pairs of odd prime numbers within a contiguous range occur at regular periodic intervals given by the primorial numbers 6 and greater. Larger primorials yield larger (relative) peaks, however the range must be >50% larger than the primorial to be easily observed. Secondary peaks occur at intervals of those "near-primorials" divisible by 6 (e.g., 42). See A259629. Also, periodicity at intervals of 6 and 30 can be observed in the local peaks of all possible sums of two, three or more distinct odd primes within modest contiguous ranges starting from p(2) = 3. - Richard R. Forberg, Jul 01 2015
If a number k and a(n) are coprime and k < (prime(n+1))^b < a(n), where b is an integer, then k has fewer than b prime factors, counting multiplicity (i.e., bigomega(k) < b, cf. A001222). - Isaac Saffold, Dec 03 2017
If n > 0, then a(n) has 2^n unitary divisors (A034444), and a(n) is a record; i.e., if k < a(n) then k has fewer unitary divisors than a(n) has. - Clark Kimberling, Jun 26 2018
Unitary superabundant numbers: numbers k with a record value of the unitary abundancy index, A034448(k)/k > A034448(m)/m for all m < k. - Amiram Eldar, Apr 20 2019
Psi(n)/n is a new maximum for each primorial (psi = A001615) [proof in link: Patrick Sole and Michel Planat, proposition 1 page 2]; compare with comment 2004: Phi(n)/n is a new minimum for each primorial. - Bernard Schott, May 21 2020
The term "primorial" was coined by Harvey Dubner (1987). - Amiram Eldar, Apr 16 2021
a(n)^(1/n) is approximately (n log n)/e. - Charles R Greathouse IV, Jan 03 2023
Subsequence of A267124. - Frank M Jackson, Apr 14 2023

Examples

			a(9) = 23# = 2*3*5*7*11*13*17*19*23 = 223092870 divides the difference 5283234035979900 in the arithmetic progression of 26 primes A204189. - _Jonathan Sondow_, Jan 15 2012
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 49.
  • P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 114.
  • D. Wolfe and S. Hirshberg, Underspecified puzzles, in Tribute to A Mathemagician, Peters, 2005, pp. 73-74.

Crossrefs

A034386 gives the second version of the primorial numbers.
Subsequence of A005117 and of A064807. Apart from the first term, a subsequence of A083207.
Cf. A001615, A002182, A002201, A003418, A005235, A006862, A034444 (unitary divisors), A034448, A034387, A033188, A035345, A035346, A036691 (compositorial numbers), A049345 (primorial base representation), A057588, A060735 (and integer multiples), A061742 (squares), A072938, A079266, A087315, A094348, A106037, A121572, A053589, A064648, A132120, A260188.
Cf. A061720 (first differences), A143293 (partial sums).
Cf. also A276085, A276086.
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.

Programs

  • Haskell
    a002110 n = product $ take n a000040_list
    a002110_list = scanl (*) 1 a000040_list
    -- Reinhard Zumkeller, Feb 19 2012, May 03 2011
    
  • Magma
    [1] cat [&*[NthPrime(i): i in [1..n]]: n in [1..20]]; // Bruno Berselli, Oct 24 2012
    
  • Magma
    [1] cat [&*PrimesUpTo(p): p in PrimesUpTo(60)]; // Bruno Berselli, Feb 08 2015
    
  • Maple
    A002110 := n -> mul(ithprime(i),i=1..n);
  • Mathematica
    FoldList[Times, 1, Prime[Range[20]]]
    primorial[n_] := Product[Prime[i], {i, n}]; Array[primorial,20] (* José María Grau Ribas, Feb 15 2010 *)
    Join[{1}, Denominator[Accumulate[1/Prime[Range[20]]]]] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    a(n)=prod(i=1,n, prime(i)) \\ Washington Bomfim, Sep 23 2008
    
  • PARI
    p=1; for (n=0, 100, if (n, p*=prime(n)); write("b002110.txt", n, " ", p) )  \\ Harry J. Smith, Nov 13 2009
    
  • PARI
    a(n) = factorback(primes(n)) \\ David A. Corneth, May 06 2018
    
  • Python
    from sympy import primorial
    def a(n): return 1 if n < 1 else primorial(n)
    [a(n) for n in range(51)]  # Indranil Ghosh, Mar 29 2017
    
  • Sage
    [sloane.A002110(n) for n in (1..20)] # Giuseppe Coppoletta, Dec 05 2014
    
  • Scheme
    ; with memoization-macro definec
    (definec (A002110 n) (if (zero? n) 1 (* (A000040 n) (A002110 (- n 1))))) ;; Antti Karttunen, Aug 30 2016

Formula

Asymptotic expression for a(n): exp((1 + o(1)) * n * log(n)) where o(1) is the "little o" notation. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001
a(n) = A054842(A002275(n)).
Binomial transform = A136104: (1, 3, 11, 55, 375, 3731, ...). Equals binomial transform of A121572: (1, 1, 3, 17, 119, 1509, ...). - Gary W. Adamson, Dec 14 2007
a(0) = 1, a(n+1) = prime(n)*a(n). - Juri-Stepan Gerasimov, Oct 15 2010
a(n) = Product_{i=1..n} A000040(i). - Jonathan Vos Post, Jul 17 2008
a(A051838(n)) = A116536(n) * A007504(A051838(n)). - Reinhard Zumkeller, Oct 03 2011
A000005(a(n)) = 2^n. - Carlos Eduardo Olivieri, Jun 16 2015
a(n) = A035345(n) - A005235(n) for n > 0. - Jonathan Sondow, Dec 02 2015
For all n >= 0, a(n) = A276085(A000040(n+1)), a(n+1) = A276086(A143293(n)). - Antti Karttunen, Aug 30 2016
A054841(a(n)) = A002275(n). - Michael De Vlieger, Aug 31 2016
a(n) = A270592(2*n+2) - A270592(2*n+1) if 0 <= n <= 4 (conjectured for all n by Alon Kellner). - Jonathan Sondow, Mar 25 2018
Sum_{n>=1} 1/a(n) = A064648. - Amiram Eldar, Oct 16 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = A132120. - Amiram Eldar, Apr 12 2021
Theta being Chebyshev's theta function, a(0) = exp(theta(1)), and for n > 0, a(n) = exp(theta(m)) for A000040(n) <= m < A000040(n+1) where m is an integer. - Miles Englezou, Nov 26 2024

A048103 Numbers not divisible by p^p for any prime p.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Keywords

Comments

If a(n) = Product p_i^e_i then p_i > e_i for all i.
Complement of A100716; A129251(a(n)) = 0. - Reinhard Zumkeller, Apr 07 2007
Density is 0.72199023441955... = Product_{p>=2} (1 - p^-p) where p runs over the primes. - Charles R Greathouse IV, Jan 25 2012
A027748(a(n),k) <= A124010(a(n),k), 1<=k<=A001221(a(n)). - Reinhard Zumkeller, Apr 28 2012
Range of A276086. Also numbers not divisible by m^m for any natural number m > 1. - Antti Karttunen, Nov 18 2024

Examples

			6 = 2^1 * 3^1 is OK but 12 = 2^2 * 3^1 is not.
625 = 5^4 is present because it is not divisible by 5^5.
		

Crossrefs

Complement: A100716.
Positions of 0's in A129251, A342023, A376418, positions of 1's in A327936, A342007, A359550 (characteristic function).
Cf. A048102, A048104, A051674 (p^p), A054743, A054744, A377982 (a left inverse, partial sums of char. fun, see also A328402).
Cf. A276086 (permutation of this sequence, see also A376411, A376413).
Subsequences: A002110, A005117, A006862, A024451 (after its initial 0), A057588, A099308 (after its initial 0), A276092, A328387, A328832, A359547, A370114, A371083, A373848, A377871, A377992.
Disjoint union of {1}, A327934 and A358215.
Also A276078 is a subsequence, from which this differs for the first time at n=451 where a(451)=625, while that value is missing from A276078.

Programs

  • Haskell
    a048103 n = a048103_list !! (n-1)
    a048103_list = filter (\x -> and $
       zipWith (>) (a027748_row x) (map toInteger $ a124010_row x)) [1..]
    -- Reinhard Zumkeller, Apr 28 2012
    
  • Mathematica
    {1}~Join~Select[Range@ 120, Times @@ Boole@ Map[First@ # > Last@ # &, FactorInteger@ #] > 0 &] (* Michael De Vlieger, Aug 19 2016 *)
  • PARI
    isok(n) = my(f=factor(n)); for (i=1, #f~, if (f[i,1] <= f[i,2], return(0))); return(1); \\ Michel Marcus, Nov 13 2020
    
  • PARI
    A359550(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(0)); if(pp > n, return(1))); }; \\ (A359550 is the characteristic function for A048103) - Antti Karttunen, Nov 18 2024
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A048103_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(map(lambda d:d[1]A048103_list = list(islice(A048103_gen(),30)) # Chai Wah Wu, Jan 05 2023
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A048103 (ZERO-POS 1 1 A129251))
    ;; Antti Karttunen, Aug 18 2016
    

Formula

a(n) ~ kn with k = 1/Product_{p>=2}(1 - p^-p) = Product_{p>=2}(1 + 1/(p^p - 1)) = 1.3850602852..., where the product is over all primes p. - Charles R Greathouse IV, Jan 25 2012
For n >= 1, A377982(a(n)) = n. - Antti Karttunen, Nov 18 2024

Extensions

More terms from James Sellers, Apr 22 2000
Showing 1-10 of 67 results. Next