cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 45 results. Next

A002109 Hyperfactorials: Product_{k = 1..n} k^k.

Original entry on oeis.org

1, 1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, 55696437941726556979200000, 21577941222941856209168026828800000, 215779412229418562091680268288000000000000000, 61564384586635053951550731889313964883968000000000000000
Offset: 0

Views

Author

Keywords

Comments

A054374 gives the discriminants of the Hermite polynomials in the conventional (physicists') normalization, and A002109 (this sequence) gives the discriminants of the Hermite polynomials in the (in my opinion more natural) probabilists' normalization. See refs Wikipedia and Szego, eq. (6.71.7). - Alan Sokal, Mar 02 2012
a(n) = (-1)^n/det(M_n) where M_n is the n X n matrix m(i,j) = (-1)^i/i^j. - Benoit Cloitre, May 28 2002
a(n) = determinant of the n X n matrix M(n) where m(i,j) = B(n,i,j) and B(n,i,x) denote the Bernstein polynomial: B(n,i,x) = binomial(n,i)*(1-x)^(n-i)*x^i. - Benoit Cloitre, Feb 02 2003
Partial products of A000312. - Reinhard Zumkeller, Jul 07 2012
Number of trailing zeros (A246839) increases every 5 terms since the exponent of the factor 5 increases every 5 terms and the exponent of the factor 2 increases every 2 terms. - Chai Wah Wu, Sep 03 2014
Also the number of minimum distinguishing labelings in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
Also shows up in a term in the solution to the generalized version of Raabe's integral. - Jibran Iqbal Shah, Apr 24 2021

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 135-145.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 477.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • G. Szego, Orthogonal Polynomials, American Mathematical Society, 1981 edition, 432 Pages.

Crossrefs

Cf. A074962 [Glaisher-Kinkelin constant, also gives an asymptotic approximation for the hyperfactorials].
Cf. A246839 (trailing 0's).
Cf. A261175 (number of digits).

Programs

  • Haskell
    a002109 n = a002109_list !! n
    a002109_list = scanl1 (*) a000312_list  -- Reinhard Zumkeller, Jul 07 2012
    
  • Maple
    f := proc(n) local k; mul(k^k,k=1..n); end;
    A002109 := n -> exp(Zeta(1,-1,n+1)-Zeta(1,-1));
    seq(simplify(A002109(n)),n=0..11); # Peter Luschny, Jun 23 2012
  • Mathematica
    Table[Hyperfactorial[n], {n, 0, 11}] (* Zerinvary Lajos, Jul 10 2009 *)
    Hyperfactorial[Range[0, 11]] (* Eric W. Weisstein, Jul 14 2017 *)
    Join[{1},FoldList[Times,#^#&/@Range[15]]] (* Harvey P. Dale, Nov 02 2023 *)
  • PARI
    a(n)=prod(k=2,n,k^k) \\ Charles R Greathouse IV, Jan 12 2012
    
  • PARI
    a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1,k+1,(1+j^j*x+x*O(x^n)) )), n) \\ Paul D. Hanna, Oct 02 2013
    
  • Python
    A002109 = [1]
    for n in range(1, 10):
        A002109.append(A002109[-1]*n**n) # Chai Wah Wu, Sep 03 2014
    
  • Sage
    a = lambda n: prod(falling_factorial(n,k) for k in (1..n))
    [a(n) for n in (0..10)]  # Peter Luschny, Nov 29 2015

Formula

a(n)*A000178(n-1) = (n!)^n = A036740(n) for n >= 1.
Determinant of n X n matrix m(i, j) = binomial(i*j, i). - Benoit Cloitre, Aug 27 2003
a(n) = exp(zeta'(-1, n + 1) - zeta'(-1)) where zeta(s, z) is the Hurwitz zeta function. - Peter Luschny, Jun 23 2012
G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k^k*x). - Paul D. Hanna, Oct 02 2013
a(n) = A240993(n) / A000142(n+1). - Reinhard Zumkeller, Aug 31 2014
a(n) ~ A * n^(n*(n+1)/2 + 1/12) / exp(n^2/4), where A = 1.2824271291006226368753425... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Feb 20 2015
a(n) = Product_{k=1..n} ff(n,k) where ff denotes the falling factorial. - Peter Luschny, Nov 29 2015
log a(n) = (1/2) n^2 log n - (1/4) n^2 + (1/2) n log n + (1/12) log n + log(A) + o(1), where log(A) = A225746 is the logarithm of Glaisher's constant. - Charles R Greathouse IV, Mar 27 2020
From Amiram Eldar, Apr 30 2023: (Start)
Sum_{n>=1} 1/a(n) = A347345.
Sum_{n>=1} (-1)^(n+1)/a(n) = A347352. (End)
From Andrea Pinos, Apr 04 2024: (Start)
a(n) = e^(Integral_{x=1..n+1} (x - 1/2 - log(sqrt(2*Pi)) + (n+1-x)*Psi(x)) dx), where Psi(x) is the digamma function.
a(n) = e^(Integral_{x=1..n} (x + 1/2 - log(sqrt(2*Pi)) + log(Gamma(x+1))) dx). (End)

A006862 Euclid numbers: 1 + product of the first n primes.

Original entry on oeis.org

2, 3, 7, 31, 211, 2311, 30031, 510511, 9699691, 223092871, 6469693231, 200560490131, 7420738134811, 304250263527211, 13082761331670031, 614889782588491411, 32589158477190044731, 1922760350154212639071, 117288381359406970983271, 7858321551080267055879091
Offset: 0

Views

Author

Keywords

Comments

It is an open question whether all terms of this sequence are squarefree.
a(n) is the smallest x > 1 such that x^prime(n) == 1 (mod prime(i)) i=1,2,3,...,n-1. - Benoit Cloitre, May 30 2002
Numbers n such that n/phi(n-1) is a record. - Arkadiusz Wesolowski, Nov 22 2012
Nyblom (theorem 2.3) proves that this sequence contains no proper powers, e.g., is a subsequence of A007916. - Charles R Greathouse IV, Mar 02 2016
It is an open question if there are an infinite number of prime Euclid numbers. - Mike Winkler, Feb 05 2017
These numbers are not pairwise relatively prime; the first example is gcd(a(7), a(17)) = 277. Also gcd(a(47), a(131)) = 1051, which is probably the second example (wrt. greater index which is here 131). It is easy to find other primes like 277 and 1051. - Jeppe Stig Nielsen, Mar 24 2017
Subsequence of A048103. Proof: For all primes p, when i >= A000720(p), neither p itself nor p^p divides a(i), but neither does p^p divide a(i) when i < A000720(p), as p^p > 1 + A034386(p). - Antti Karttunen, Nov 17 2024

Examples

			It is a universal convention that an empty product is 1 (just as an empty sum is 0), and since this sequence has offset 0, the first term is 1+1 = 2. - _N. J. A. Sloane_, Dec 02 2015
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 134.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 211, p. 61, Ellipses, Paris 2008.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • F. Smarandache, Properties of numbers, Arizona State University Special Collections, 1973.
  • I. Vardi, Computational Recreations in Mathematica, Addison-Wesley, 1991, sections 5.1 and 5.2.
  • S. Wagon, Mathematica in Action, Freeman, NY, 1991, p. 35.

Crossrefs

Cf. A005867, A007916, A014545, A018239 (primes in sequence), A034386, A057588, A377871.
Subsequence of A048103.

Programs

  • Magma
    [2] cat [&*PrimesUpTo(p)+1: p in PrimesUpTo(70)]; // Vincenzo Librandi, Dec 03 2015
    
  • Maple
    with(numtheory): A006862 := proc(n) local i; if n=0 then 2 else 1+product('ithprime(i)','i'=1..n); fi; end;
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 2,
          1+ithprime(n)*(a(n-1)-1))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Feb 06 2021
  • Mathematica
    Table[Product[Prime[k], {k, 1, n}] + 1, {n, 1, 18}]
    1 + FoldList[Times, 1, Prime@ Range@ 19] (* Harvey P. Dale, Dec 02 2015 and modified by Robert G. Wilson v, Mar 25 2017 *)
  • PARI
    a(n)=my(v=primes(n)); prod(i=1,#v,v[i])+1 \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    from sympy import primorial
    def A006862(n):
        if n == 0: return 2
        else: return 1 + primorial(n) # Karl-Heinz Hofmann, Aug 21 2024

Formula

a(n) = A002110(n) + 1.
For n >= 1, a(n) = A057588(n) + 2. - Antti Karttunen, Nov 17 2024

A018239 Primorial primes: primes of the form 1 + product of first k primes, for some k.

Original entry on oeis.org

2, 3, 7, 31, 211, 2311, 200560490131
Offset: 1

Views

Author

Keywords

Comments

Prime numbers that are the sum of two primorial numbers. - Juri-Stepan Gerasimov, Nov 08 2010

Examples

			From _M. F. Hasler_, Jun 23 2019: (Start)
a(1) = 2 = 1 + product of the first 0 primes (i.e., the empty product = 1).
a(2) = 3 = 1 + 2 = 1 + product of the first prime (= 2).
a(3) = 7 = 1 + 2*3 = 1 + product of the first two primes.
a(4) = 31 = 1 + 2*3*5 = 1 + product of the first three primes.
a(5) = 211 = 1 + 2*3*5*7 = 1 + product of the first four primes.
a(6) = 2311 = 1 + 2*3*5*7*11 = 1 + product of the first five primes.
Then the product of the first 6, 7, ..., 9 or 10 primes does not yield a primorial prime, the next one is:
a(7) = 200560490131 = 1 + 2*3*5*7*11*13*17*19*23*29*31 = 1 + product of the first eleven primes,
and so on. See A014545 = (0, 1, 2, 3, 4, 5, 11, 75, 171, 172, ...) for the k's that yield a term. (End)
		

References

  • F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sciences, Vol. 16E, No. 2 (1997), pp. 237-240.

Crossrefs

Primes in A006862 (primorials plus 1).
A005234 and A014545 (which are the main entries for this sequence) give more terms.
Cf. A002110.

Programs

  • Mathematica
    Select[FoldList[Times, 1, Prime[Range[200]]] + 1, PrimeQ] (* Loreno Heer (helohe(AT)bluewin.ch), Jun 29 2004 *)
  • PARI
    P=1;print1(2); forprime(p=2,1e6, if(isprime(1+P*=p), print1(", "P+1))) \\ Charles R Greathouse IV, Apr 28 2015

Formula

a(n) = 1 + A002110(A014545(n)), where A002110(k) is the product of the first k primes. - M. F. Hasler, Jun 23 2019

Extensions

Edited by N. J. A. Sloane at the suggestion of Vladeta Jovovic, Jun 18 2007
Name edited by M. F. Hasler, Jun 23 2019

A006794 Primorial -1 primes: primes p such that -1 + product of primes up to p is prime.

Original entry on oeis.org

3, 5, 11, 13, 41, 89, 317, 337, 991, 1873, 2053, 2377, 4093, 4297, 4583, 6569, 13033, 15877, 843301, 1098133, 3267113, 4778027, 6354977, 6533299
Offset: 1

Views

Author

Keywords

Comments

Or, p such that primorial(p) - 1 is prime.
Conjecture: if p# - 1 is a prime number, then the previous prime is greater than p# - exp(1)*p. - Arkadiusz Wesolowski, Jun 19 2016

References

  • H. Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No. 3, 1987), 197-203.
  • R. K. Guy, Unsolved Problems in Number Theory, Section A2.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 4-5.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 111.

Crossrefs

Cf. A057704 (Primorial - 1 prime indices: integers n such that the n-th primorial minus 1 is prime).

Programs

  • Mathematica
    primorial[p_] := Product[Prime[k], {k, 1, PrimePi[p]}]; Select[Prime[Range[1900]], PrimeQ[primorial[#] - 1] &] (* Jean-François Alcover, Mar 16 2011 *)
    Transpose[With[{pr=Prime[Range[2000]]},Select[Thread[{Rest[FoldList[ Times,1,pr]], pr}], PrimeQ[ First[#]-1]&]]][[2]] (* Harvey P. Dale, Jun 21 2011 *)
    With[{p = Prime[Range[200]]}, p[[Flatten[Position[Rest[FoldList[Times, 1, p]] - 1, ?PrimeQ]]]]] (* _Eric W. Weisstein, Nov 03 2015 *)
  • PARI
    is(n)=isprime(n) && ispseudoprime(prod(i=1,primepi(n),prime(i))-1) \\ Charles R Greathouse IV, Apr 29 2015
    
  • Python
    from sympy import nextprime, isprime
    A006794_list, p, q = [], 2, 2
    while p < 10**5:
        if isprime(q-1):
            A006794_list.append(p)
        p = nextprime(p)
        q *= p # Chai Wah Wu, Apr 03 2021

Formula

a(n) = A000040(A057704(n)).
a(n) = prime(A057704(n)).

Extensions

Stated incorrectly in CRC Standard Mathematical Tables and Formulae, 30th ed., 1996, p. 101; corrected in 2nd printing.
Corrected by Arlin Anderson (starship1(AT)gmail.com), who reports that he and Don Robinson have checked this sequence through about 63000 digits without finding another term (Jul 04 2000).
a(19)-a(20) from Eric W. Weisstein, Dec 08 2015 (Mark Rodenkirch confirms based on saved log files that all p < 700000 have been tested)
a(21) from Jeppe Stig Nielsen, Oct 19 2021
a(22)-a(24) from Jeppe Stig Nielsen, Dec 16 2024

A103514 a(n) is the smallest m such that primorial(n)/2 - 2^m is prime.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 25, 2, 1, 6, 6, 19, 1, 13, 3, 3, 11, 29, 2, 1, 6, 3, 4, 2, 6, 4, 15, 6, 4, 20, 4, 1, 7, 16, 4, 7, 22, 3, 12, 13, 9, 35, 2, 3, 3, 52, 35, 3, 32, 15, 13, 10, 53, 56, 9, 16, 36, 5, 8, 5, 22, 3, 14, 2, 64, 37, 8, 22, 42, 11, 22, 22, 12, 11, 26, 1, 54, 187, 20, 9
Offset: 2

Views

Author

Lei Zhou, Feb 15 2005

Keywords

Examples

			P(2)/2-2^0=2 is prime, so a(2)=0;
P(10)/2-2^3=3234846607 is Prime, so a(10)=3.
		

Crossrefs

Programs

  • Mathematica
    nmax = 2^8192; npd = 1; n = 2; npd = npd*Prime[n]; While[npd < nmax, tn = 1; tt = 2; cp = npd - tt; While[(cp > 1) && (! (PrimeQ[cp])), tn = tn + 1; tt = tt*2; cp = npd - tt]; If[cp < 2, Print["*"], Print[tn]]; n = n + 1; npd = npd*Prime[n]]
    (* Second program: *)
    k = 1; a = {}; Do[k = k*Prime[n]; m = 1; While[ ! PrimeQ[k - 2^m], m++ ]; Print[m]; AppendTo[a, m], {n, 2, 200}]; a (* Artur Jasinski, Apr 21 2008 *)
  • PARI
    a(n)=my(t=prod(i=2,n,prime(i)),m); while(!isprime(t-2^m),m++); m \\ Charles R Greathouse IV, Apr 28 2015

Extensions

Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar

A005234 Primes p such that 1 + product of primes up to p is prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 31, 379, 1019, 1021, 2657, 3229, 4547, 4787, 11549, 13649, 18523, 23801, 24029, 42209, 145823, 366439, 392113, 4328927, 5256037, 6369619, 7351117, 9562633
Offset: 1

Views

Author

Keywords

Comments

Conjecture: if p# + 1 is a prime number, then the next prime is less than p# + exp(1)*p. - Arkadiusz Wesolowski, Feb 20 2013
Conjecture: if p# + 1 is a prime, then the next prime is less than p# + p^2. - Thomas Ordowski, Apr 07 2013

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 134.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 211, p. 61, Ellipses, Paris 2008.
  • H. Dubner, A new primorial prime, J. Rec. Math., 21 (No. 4, 1989), 276.
  • R. K. Guy, Unsolved Problems in Number Theory, Section A2.
  • F. Le Lionnais, Les Nombres Remarquables, Paris, Hermann, 1983, p. 109, 1983.
  • Paulo Ribenboim, The New Book of Prime Number Records, p. 13.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 4-5.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 112.

Crossrefs

Cf. A006862 (Euclid numbers).
Cf. A014545 (Primorial plus 1 prime indices: n such that 1 + (Product of first n primes) is prime).
Cf. A018239 (Primorial plus 1 primes).

Programs

  • Magma
    [p:p in PrimesUpTo(3000)|IsPrime(&*PrimesUpTo(p)+1)]; // Marius A. Burtea, Mar 25 2019
  • Maple
    N:= 5000: # to get all terms <= N
    Primes:= select(isprime, [$2..N]):
    P:= 1: count:= 0:
    for n from 1 to nops(Primes) do
       P:= P*Primes[n];
       if isprime(P+1) then
         count:= count+1; A[count]:= Primes[n]
       fi
    od:
    seq(A[i],i=1..count); # Robert Israel, Nov 03 2015
  • Mathematica
    (* This program is not convenient for large values of p *) p = pp = 1; Reap[While[p < 5000, p = NextPrime[p]; pp = pp*p; If[PrimeQ[1 + pp], Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 31 2012 *)
    With[{p = Prime[Range[200]]}, p[[Flatten[Position[Rest[FoldList[Times, 1, p]] + 1, ?PrimeQ]]]]] (* _Eric W. Weisstein, Nov 03 2015 *)
  • PARI
    is(n)=isprime(n) && ispseudoprime(prod(i=1,primepi(n),prime(i))+1) \\ Charles R Greathouse IV, Feb 20 2013
    
  • PARI
    is(n)=isprime(n) && ispseudoprime(factorback(primes([2,n]))+1) \\ M. F. Hasler, May 31 2018
    

Formula

a(n) = A000040(A014545(n+1)). - M. F. Hasler, May 31 2018

Extensions

42209 sent in by Chris Nash (chrisnash(AT)cwix.com).
145823 discovered and sent in by Arlin Anderson (starship1(AT)gmail.com) and Don Robinson (donald.robinson(AT)itt.com), Jun 01 2000
366439, 392113 from Eric W. Weisstein, Mar 13 2004 (based on information in A014545)
a(23) from Jeppe Stig Nielsen, Aug 08 2024
a(24) from Jeppe Stig Nielsen, Sep 01 2024
a(25) from Jeppe Stig Nielsen, Sep 24 2024
a(26) from Jeppe Stig Nielsen, Nov 10 2024
a(27) from Jeppe Stig Nielsen, Aug 21 2025

A057704 Primorial - 1 prime indices: integers m such that the m-th primorial minus 1 is prime.

Original entry on oeis.org

2, 3, 5, 6, 13, 24, 66, 68, 167, 287, 310, 352, 564, 590, 620, 849, 1552, 1849, 67132, 85586, 234725, 334023, 435582, 446895
Offset: 1

Views

Author

Labos Elemer, Oct 24 2000

Keywords

Comments

There are two versions of "primorial": this is using the definition in A002110. - Robert Israel, Dec 30 2014
As of 28 February 2012, the largest known primorial prime is A002110(85586) - 1 with 476311 digits, found by the PrimeGrid project (see link). - Dmitry Kamenetsky, Aug 11 2015

Examples

			The 6th primorial is A002110(6) = 2*3*5*7*11*13 = 30030, and 30030 - 1 = 30029 is a prime, so 6 is in the sequence.
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 114.

Crossrefs

Cf. A006794 (Primorial -1 primes: Primes p such that -1 + product of primes up to p is prime).

Programs

  • Maple
    P:= 1:
    p:= 1:
    count:= 0:
    for n from 1 to 1000 do
      p:= nextprime(p);
      P:= P*p;
      if isprime(P-1) then
        count:= count+1;
        A[count]:= n;
      fi
    od:
    seq(A[i],i=1..count); # Robert Israel, Dec 25 2014
  • Mathematica
    a057704[n_] :=
    Flatten@Position[
    Rest[FoldList[Times, 1, Prime[Range[n]]]] - 1, Integer?PrimeQ]; a057704[500] (* _Michael De Vlieger, Dec 25 2014 *)
  • PARI
    lista(nn) = {s = 1; for(k=1, nn, s *= prime(k); if(ispseudoprime(s - 1), print1(k, ", ")); ); } \\ Altug Alkan, Dec 08 2015
    
  • PARI
    is(n) = ispseudoprime(prod(k=1, n, prime(k)) - 1); \\ Altug Alkan, Dec 08 2015

Formula

a(n) = A000720(A006794(n)).
a(n) = primepi(A006794(n)).

Extensions

Corrected by Holzer Werner, Nov 28 2002
a(19)-a(20) from Eric W. Weisstein, Dec 08 2015 (Mark Rodenkirch confirms based on saved log files that all p < 700,000 have been tested)
a(21) from Jeppe Stig Nielsen, Oct 19 2021
a(22)-a(24) from Jeppe Stig Nielsen, Dec 16 2024

A057705 Primorial primes: primes p such that p+1 is a primorial number (A002110).

Original entry on oeis.org

5, 29, 2309, 30029, 304250263527209, 23768741896345550770650537601358309, 19361386640700823163471425054312320082662897612571563761906962414215012369856637179096947335243680669607531475629148240284399976569
Offset: 1

Views

Author

Labos Elemer, Oct 24 2000

Keywords

Crossrefs

See A006794 and A057704 (the main entries for this sequence) for more terms.
Subsequence of A057588.

Programs

  • Haskell
    a057705 n = a057705_list !! (n-1)
    a057705_list = filter ((== 1) . a010051) a057588_list
    -- Reinhard Zumkeller, Mar 27 2013
  • Mathematica
    Select[FoldList[Times, 1, Prime[Range[70]]], PrimeQ[# - 1] &] - 1 (* Harvey P. Dale, Jan 27 2014 *)

Formula

a(n) = A002110(A057704(n)) - 1.

A038711 a(n) is the smallest m such that A002110(n) + m is prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 17, 19, 23, 37, 61, 1, 61, 71, 47, 107, 59, 61, 109, 89, 103, 79, 151, 197, 101, 103, 233, 223, 127, 223, 191, 163, 229, 643, 239, 157, 167, 439, 239, 199, 191, 199, 383, 233, 751, 313, 773, 607, 313, 383, 293, 443, 331, 283, 277, 271, 401, 307
Offset: 0

Views

Author

Labos Elemer, May 02 2000

Keywords

Comments

Any composite a(n) would disprove Fortune's conjecture, see A005235. - Jeppe Stig Nielsen, Oct 31 2003

Examples

			For n=11, 1 + A002110(11) = 200560490131 < 200560490197 = 67 + A002110(11); therefore, a(11)=1 but A005235(11)=67.
		

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember; `if`(n<1, 1, p(n-1)*ithprime(n)) end:
    a:= n-> nextprime(p(n))-p(n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 16 2020
  • Mathematica
    nmax=2^16384; npd=1;n=1;npd=npd*Prime[n]; While[npdLei Zhou, Feb 15 2005 *)
  • PARI
    a(n) = my(P=vecprod(primes(n))); nextprime(P+1) - P; \\ Michel Marcus, Dec 12 2023

Formula

a(n) = Min(1, A005235(n)); a(n)=1 for n=1, 2, 3, 4, 5, 11, 75, ...
a(n) = 1 for n=0, 1, 2, 3, 4, 5, 11, 75, ... (A014545); a(n) = A005235(n) otherwise. - Jeppe Stig Nielsen, Oct 31 2003
a(n) = A038710(n) - A002110(n). - Alois P. Heinz, Mar 16 2020

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 16 2020

A054988 Number of prime divisors of 1 + (product of first n primes), with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 2, 2, 3, 1, 3, 3, 2, 3, 4, 4, 2, 2, 4, 2, 3, 2, 4, 3, 2, 4, 4, 3, 3, 5, 3, 6, 2, 3, 2, 5, 4, 4, 2, 6, 3, 4, 3, 5, 6, 7, 2, 6, 3, 5, 3, 4, 2, 6, 5, 4, 5, 3, 5, 5, 5, 3, 3, 5, 5, 6, 3, 4, 4, 7, 5, 3, 4, 1, 2, 5, 5, 5, 4, 5, 3, 5, 4, 6, 5, 8
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

Prime divisors are counted with multiplicity. - Harvey P. Dale, Oct 23 2020
It is an open question as to whether omega(p#+1) = bigomega(p#+1) = a(n); that is, as to whether the Euclid numbers are squarefree. Any square dividing p#+1 must exceed 2.5*10^15 (see Vardi, p. 87). - Sean A. Irvine, Oct 21 2023

Examples

			a(6)=2 because 2*3*5*7*11*13+1 = 30031 = 59 * 509.
		

References

  • Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesley, 1991.

Crossrefs

Programs

  • Maple
    A054988 := proc(n)
        numtheory[bigomega](1+mul(ithprime(i),i=1..n)) ;
    end proc:
    seq(A054988(n),n=1..20) ; # R. J. Mathar, Mar 09 2022
  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[Product[Table[Prime[i], {i, q}][[j]], {j, q}]+1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]]
    PrimeOmega[#+1]&/@FoldList[Times,Prime[Range[90]]] (* Harvey P. Dale, Oct 23 2020 *)
  • PARI
    a(n) = bigomega(1+prod(k=1, n, prime(k))); \\ Michel Marcus, Mar 07 2022

Formula

a(n) = Omega(1 + Product_{k=1..n} prime(k)). - Wesley Ivan Hurt, Mar 06 2022
a(n) = A001222(A006862(n)). - Michel Marcus, Mar 07 2022
a(n) = 1 iff n is in A014545. - Bernard Schott, Mar 07 2022

Extensions

More terms from Robert G. Wilson v, Mar 24 2001
a(44)-a(81) from Charles R Greathouse IV, May 07 2011
a(82)-a(87) from Amiram Eldar, Oct 03 2019
Showing 1-10 of 45 results. Next