A068488 m for which p(m) is the least prime dividing #p(n) + 1, i.e., primorial n-th prime augmented by 1 (A005234).
2, 4, 11, 47, 344, 17, 8, 69, 66, 67, 8028643011, 42, 18, 39, 162, 21, 59, 48, 2311331257, 179, 369, 2477, 23289, 32, 172011, 75668, 342, 35, 28757, 356411, 243, 297, 152
Offset: 1
Links
- R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2018. - From N. J. A. Sloane, Jun 13 2012
- Hisanori Mishima, Factorization results #Pn (Primorial) + 1
Crossrefs
Cf. A068489.
Programs
-
Mathematica
Do[ Print[ PrimePi[ FactorInteger[ Product[ Prime[k], {k, 1, n}] + 1] [[1, 1]]]], {n, 1, 20} ]
Formula
a(n) = PrimePi(A051342).
Extensions
Edited and extended by Robert G. Wilson v, Mar 12 2002
Comments