cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006953 a(n) = denominator of Bernoulli(2n)/(2n).

Original entry on oeis.org

12, 120, 252, 240, 132, 32760, 12, 8160, 14364, 6600, 276, 65520, 12, 3480, 85932, 16320, 12, 69090840, 12, 541200, 75852, 2760, 564, 2227680, 132, 6360, 43092, 6960, 708, 3407203800, 12, 32640, 388332, 120, 9372, 10087262640
Offset: 1

Views

Author

Keywords

Comments

a(n) are alternately divisible by 12 and 120, a(n)/(12, 120, 12, 120, 12, 120, ...) = 1, 1, 21, 2, 11, 273, ... . - Paul Curtz, Sep 13 2011 and Michel Marcus, Jan 05 2013
A141590/(2 before a(n+1)) = 1/2 + 1/12 - 1/120 + 1/252 is an old semi-convergent series for Euler's constants A001620 ("2 before a" meaning that one term, namely 2, is inserted before the sequence). This series is discussed in details in reference [Blagouchine, 2016], Sect. 3 and Fig. 3. - Paul Curtz, Sep 13 2011, Michel Marcus, Jan 05 2013 and Iaroslav V. Blagouchine, Sep 16 2015
a(n) = A006863(n)/2. - Michel Marcus, Jan 05 2013

Examples

			Sequence Bernoulli(2n)/(2n) (n >= 1) begins 1/12, -1/120, 1/252, -1/240, 1/132, -691/32760, 1/12, -3617/8160, ... .
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 259, (6.3.18) and (6.3.19); also p. 810.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Numerators are given by A001067.

Programs

  • GAP
    List([1..40], n-> DenominatorRat(Bernoulli(2*n)/(2*n)) ); # G. C. Greubel, Sep 19 2019
  • Magma
    [Denominator(Bernoulli(2*n)/(2*n)):n in [1..40]]; // Vincenzo Librandi, Sep 17 2015
    
  • Maple
    A006953_list := proc(n) 1/(1-1/exp(z)); series(%,z,2*n+4);
    seq(denom((-1)^i*(2*i+1)!*coeff(%,z,2*i+1)),i=0..n) end;
    A006953_list(35); # Peter Luschny, Jul 12 2012
  • Mathematica
    Table[Denominator[BernoulliB[2n]/(2n)],{n,40}] (* Harvey P. Dale, Jan 12 2022 *)
  • PARI
    a(n) = denominator(bernfrac(2*n)/(2*n)); \\ Michel Marcus, Apr 21 2016
    
  • Sage
    [denominator(bernoulli(2*n)/(2*n)) for n in (1..40)] # G. C. Greubel, Sep 19 2019
    

Formula

Zeta(1-2*n) = -Bernoulli(2*n)/(2*n).
G.f. for Bernoulli(2*n)/(2*n) = A001067(n)/A006953(n): (-1)^n/((2*Pi)^(2*n)*(2*n)) * Integral_{t=0..1} log(1-1/t)^(2*n) dt. - Gerry Martens, May 18 2011
E.g.f.: a(n) = denominator((2*n+1)!*[x^(2*n+1)](1/(1-1/exp(x)))). - Peter Luschny, Jul 12 2012

Extensions

Previous Mathematica program replaced by Harvey P. Dale, Jan 12 2022