cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A242249 Number A(n,k) of rooted trees with n nodes and k-colored non-root nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 0, 0, 1, 3, 7, 4, 0, 0, 1, 4, 15, 26, 9, 0, 0, 1, 5, 26, 82, 107, 20, 0, 0, 1, 6, 40, 188, 495, 458, 48, 0, 0, 1, 7, 57, 360, 1499, 3144, 2058, 115, 0, 0, 1, 8, 77, 614, 3570, 12628, 20875, 9498, 286, 0, 0, 1, 9, 100, 966, 7284, 37476, 111064, 142773, 44947, 719, 0
Offset: 0

Views

Author

Alois P. Heinz, May 09 2014

Keywords

Comments

From Vaclav Kotesovec, Aug 26 2014: (Start)
Column k > 0 is asymptotic to c(k) * d(k)^n / n^(3/2), where constants c(k) and d(k) are dependent only on k. Conjecture: d(k) ~ k * exp(1). Numerically:
d(1) = 2.9557652856519949747148175... (A051491)
d(2) = 5.6465426162329497128927135... (A245870)
d(3) = 8.3560268792959953682760695...
d(4) = 11.0699628777593263124193026...
d(5) = 13.7856511100846851989303249...
d(6) = 16.5022088446930015657112211...
d(7) = 19.2192613290638657575973462...
d(8) = 21.9366222112987115910888213...
d(9) = 24.6541883249893084812976812...
d(10) = 27.3718979186642404090999595...
d(100) = 272.0126359583480733207362718...
d(101) = 274.7309127032967881125015217...
d(200) = 543.8405620978790523837823296...
d(201) = 546.5588426492458787468860222...
d(101)-d(100) = 2.718276744...
d(201)-d(200) = 2.718280551...
(End)

Examples

			Square array A(n,k) begins:
  0,  0,    0,     0,      0,      0,       0,       0, ...
  1,  1,    1,     1,      1,      1,       1,       1, ...
  0,  1,    2,     3,      4,      5,       6,       7, ...
  0,  2,    7,    15,     26,     40,      57,      77, ...
  0,  4,   26,    82,    188,    360,     614,     966, ...
  0,  9,  107,   495,   1499,   3570,    7284,   13342, ...
  0, 20,  458,  3144,  12628,  37476,   91566,  195384, ...
  0, 48, 2058, 20875, 111064, 410490, 1200705, 2984142, ...
		

Crossrefs

Rows n=0-3 give: A000004, A000012, A001477, A005449.
Lower diagonal gives A242375.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<2, n, (add(add(d*
          A(d, k), d=divisors(j))*A(n-j, k)*k, j=1..n-1))/(n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    nn = 10; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; Transpose[ Table[Flatten[ sol = SolveAlways[ 0 == Series[ t[x] - x Product[1/(1 - x^i)^(n a[i]), {i, 1, nn}], {x, 0, nn}], x]; Flatten[{0, Table[a[n], {n, 1, nn}]}] /. sol], {n, 0, nn}]] // Grid (* Geoffrey Critzer, Nov 11 2014 *)
    A[n_, k_] := A[n, k] = If[n<2, n, Sum[Sum[d*A[d, k], {d, Divisors[j]}] *A[n-j, k]*k, {j, 1, n-1}]/(n-1)]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 04 2014, translated from Maple *)
  • PARI
    \\ ColGf gives column generating function
    ColGf(N,k) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = k/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); x*Ser(A)}
    Mat(vector(8, k, concat(0, Col(ColGf(7, k-1))))) \\ Andrew Howroyd, May 12 2018

Formula

G.f. for column k: x*Product_{n>=1} 1/(1 - x^n)^(k*A(n,k)). - Geoffrey Critzer, Nov 13 2014

A038059 Number of rooted trees with 3-colored nodes.

Original entry on oeis.org

3, 9, 45, 246, 1485, 9432, 62625, 428319, 3000393, 21410436, 155106693, 1137703869, 8432624850, 63060142671, 475196487363, 3604851603690, 27507181503069, 210988219961637, 1625848092941463, 12580709718788622, 97714211996345868, 761528782558088202
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

Shifts left and divides by 3 under Euler transform.

Crossrefs

Cf. A000081, A038055-A038062, A271879 (multisets).

Programs

  • Maple
    with(numtheory): a:= proc(n) option remember; `if`(n<2, 3*n, (add(add(d*a(d), d=divisors(j)) *a(n-j), j=1..n-1))/ (n-1)) end: seq(a(n), n=1..30); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    a[n_] := a[n] = If[n<2, 3*n, Sum[Sum[d*a[d], {d, Divisors[j]}] *a[n-j], {j, 1, n-1}]/(n-1)]; Array[a, 30] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)

Formula

a(n) = 3 * A006964(n).

A052751 A simple grammar.

Original entry on oeis.org

1, 1, 4, 19, 107, 647, 4167, 27847, 191747, 1349743, 9671316, 70297105, 517079157, 3841701488, 28787546360, 217317367487, 1651144126659, 12616570941114, 96891439504019, 747452640586114, 5789461514134881
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. A006964.

Programs

  • Maple
    spec := [S,{S=Set(B),B=Prod(S,S,S,Z)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));if(n==0,1,for(i=1,n, A=exp(sum(k=1,n,subst(x*A^3,x,x^k+x*O(x^n))/k)));polcoeff(A,n,x))} \\ Paul D. Hanna, Jul 13 2006

Formula

G.f.: A(x) = exp(A(x)^3*x + A(x^2)^3*x^2/2 + A(x^3)^3*x^3/3 +...), A(0)=1; also, A(x)^3 = Sum_{n>=0} A006964(n+1)*x^n. - Paul D. Hanna, Jul 13 2006

A271879 Triangle T(n,t) by rows: The number of rooted forests with n 3-colored nodes and t rooted trees.

Original entry on oeis.org

3, 9, 6, 45, 27, 10, 246, 180, 54, 15, 1485, 1143, 405, 90, 21, 9432, 7704, 2856, 720, 135, 28, 62625, 52731, 20682, 5385, 1125, 189, 36, 428319, 369969, 150282, 40914, 8730, 1620, 252, 45, 3000393, 2638332, 1104702, 309510, 68400, 12891, 2205, 324, 55
Offset: 1

Views

Author

R. J. Mathar, Apr 16 2016

Keywords

Comments

See eq. (27) of the reference for a recurrence.

Examples

			3 ;
9 6 ;
45 27 10;
246 180 54 15;
1485 1143 405 90 21;
9432 7704 2856 720 135 28;
62625 52731 20682 5385 1125 189 36;
428319 369969 150282 40914 8730 1620 252 45;
3000393 2638332 1104702 309510 68400 12891 2205 324 55;
21410436 19097802 8183943 2353989 531702 103140 17868 2880 405 66;
155106693 139921470 61122222 17954262 4140105 816858 145134 23661 3645 495 78;
1137703869 1035882315 459695791 137490273 32241834 6466053 1164978 194382 30270 4500 594 91 ;
8432624850 7737370857 3479520051 1056731244 251493255 51104574 9331833 1576062 250884 37695 5445 702 105 ;
		

Crossrefs

Cf. A033185 (1-colored nodes), A038059 (column k=1), A006964 (row sums), A271878 (2-colored nodes).

Programs

  • Maple
    g:= proc(n) option remember; `if`(n<2, 3*n, (add(add(d*g(d),
           d=numtheory[divisors](j))*g(n-j), j=1..n-1))/(n-1))
        end:
    b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
          `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*
           binomial(g(i)+j-1, j), j=0..min(n/i, p)))))
        end:
    T:= (n, k)-> b(n$2, k):
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Apr 13 2017
  • Mathematica
    g[n_] := g[n] = If[n < 2, 3*n, (Sum[Sum[d*g[d], {d, Divisors[j]}]*g[n - j], {j, 1, n - 1}])/(n - 1)];
    b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[g[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]];
    T[n_, k_] :=  b[n, n, k];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Nov 10 2017, after Alois P. Heinz *)

A339643 Number of rooted trees with n nodes colored using exactly 3 colors.

Original entry on oeis.org

0, 0, 9, 102, 870, 6744, 50421, 371676, 2731569, 20113005, 148752507, 1106207331, 8274878880, 62263100994, 471138360426, 3584051515209, 27399942354822, 210432444531798, 1622954350900455, 12565580096217270, 97634810663895132, 761110656740387865, 5951117699678438271
Offset: 1

Views

Author

Andrew Howroyd, Dec 11 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n<2, k*n, (add(add(b(d, k)*
          d, d=numtheory[divisors](j))*b(n-j, k), j=1..n-1))/(n-1))
        end:
    a:= n-> b(n, 3)-3*b(n, 2)+3*b(n, 1):
    seq(a(n), n=1..23);  # Alois P. Heinz, Dec 11 2020
  • Mathematica
    b[n_, k_] := b[n, k] = If[n < 2, k*n, (Sum[Sum[b[d, k]*d, {d, Divisors[j]}]*b[n - j, k], {j, 1, n - 1}])/(n - 1)];
    a[n_] := b[n, 3] - 3 b[n, 2] + 3 b[n, 1];
    Array[a, 23] (* Jean-François Alcover, Jan 04 2021, after Alois P. Heinz *)
  • PARI
    \\ See A141610 for U(N,m)
    seq(n)={U(n,3) - 3*U(n,2) + 3*U(n,1)}

Formula

a(n) = A038059(n) - 3*A038055(n) + 3*A000081(n).
a(n) = 3*(A006964(n) - 2*A000151(n) + A000081(n)).

A363471 G.f. satisfies A(x) = exp( 3 * Sum_{k>=1} A(-x^k) * x^k/k ).

Original entry on oeis.org

1, 3, -3, -26, 48, 444, -920, -9126, 19587, 204214, -449496, -4841001, 10856283, 119585034, -271813440, -3044796399, 6991433415, 79341313335, -183641493481, -2105713558467, 4905239040894, 56722082044512, -132833292089826, -1546827734185557
Offset: 0

Views

Author

Seiichi Manyama, Jun 03 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(3*sum(k=1, i, subst(A, x, -x^k)*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = B(x)^3 where B(x) is the g.f. of A200402.
A(x) = Sum_{k>=0} a(k) * x^k = 1/Product_{k>=0} (1-x^(k+1))^(3 * (-1)^k * a(k)).
a(0) = 1; a(n) = (3/n) * Sum_{k=1..n} ( Sum_{d|k} d * (-1)^(d-1) * a(d-1) ) * a(n-k).

A345241 G.f. A(x) satisfies: A(x) = x + x^2 * exp(3 * Sum_{k>=1} A(x^k) / k).

Original entry on oeis.org

1, 1, 3, 9, 28, 93, 315, 1109, 3969, 14505, 53726, 201588, 764001, 2921730, 11257881, 43669590, 170383933, 668236581, 2632898016, 10416893159, 41368099791, 164841324837, 658883345595, 2641064296638, 10613953319448, 42757746556377, 172628891937513, 698398635475974
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 28; A[] = 0; Do[A[x] = x + x^2 Exp[3 Sum[A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; a[n_] := a[n] = (3/(n - 2)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 28}]

Formula

G.f.: x + x^2 / Product_{n>=1} (1 - x^n)^(3*a(n)).
a(n+2) = (3/n) * Sum_{k=1..n} ( Sum_{d|k} d * a(d) ) * a(n-k+2).

A014276 Number of directed rooted trees on n nodes with forbidden limbs.

Original entry on oeis.org

0, 1, 3, 15, 82, 495, 3144, 20874, 142766, 1000083, 7136463, 51699614, 379214625, 2810720045, 21018835670, 158389275075, 1201541422730, 9168456492986, 70324572634341, 541910543713685, 4193257236992896, 32568879336517050, 253822497160605899, 1984276479881989537, 15556238037968354214, 122274773948426045945
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A006964.

Programs

  • Mathematica
    nmax = 30; b = ConstantArray[0, nmax+1]; b[[1]] = 0; b[[2]] = 1; Do[b[[n+1]] = SeriesCoefficient[(x-x^7-x^8+x^13) / Product[(1 - x^p)^(3*b[[p+1]]), {p, 1, n-1}], {x, 0, n}], {n, 2, nmax}]; b (* Vaclav Kotesovec, Feb 28 2016 *)

Formula

G.f. (x-x^7-x^8+x^13)/[Product_{p>=1} (1-x^p)^(3*a(p))], in implicit form. - R. J. Mathar, Feb 26 2016

A345883 G.f. A(x) satisfies: A(x) = x / exp(3 * Sum_{k>=1} A(x^k) / k).

Original entry on oeis.org

1, -3, 12, -64, 372, -2268, 14394, -94296, 632328, -4317846, 29925108, -209966748, 1488507931, -10645680858, 76717312932, -556528367791, 4060765734816, -29782931545368, 219444442931836, -1623585342758532, 12057148232386980, -89842712017158526, 671521130395037280
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 28 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1, -3*add(a(n-k)*
          add(d*a(d), d=numtheory[divisors](k)), k=1..n-1)/(n-1))
        end:
    seq(a(n), n=1..23);  # Alois P. Heinz, Jun 28 2021
  • Mathematica
    nmax = 23; A[] = 0; Do[A[x] = x/Exp[3 Sum[A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = 1; a[n_] := a[n] = -(3/(n - 1)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 1, 23}]

Formula

G.f.: x * Product_{n>=1} (1 - x^n)^(3*a(n)).
a(n+1) = -(3/n) * Sum_{k=1..n} ( Sum_{d|k} d * a(d) ) * a(n-k+1).

A345885 G.f. A(x) satisfies: A(x) = x * exp(3 * Sum_{k>=1} (-1)^k * A(x^k) / k).

Original entry on oeis.org

1, -3, 15, -82, 486, -3090, 20497, -140010, 979131, -6976603, 50461716, -369533691, 2734423934, -20414010219, 153571115619, -1163003999342, 8859172575069, -67835214598017, 521824159637718, -4030828937892966, 31252886542570119, -243142210911325273, 1897466281615297698
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 28 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1, 3*add(a(n-k)*add(d*a(d)
          *(-1)^(k/d), d=numtheory[divisors](k)), k=1..n-1)/(n-1))
        end:
    seq(a(n), n=1..23); # Alois P. Heinz, Jun 28 2021
  • Mathematica
    nmax = 23; A[] = 0; Do[A[x] = x Exp[3 Sum[(-1)^k A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = 1; a[n_] := a[n] = (3/(n - 1)) Sum[Sum[(-1)^(k/d) d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 1, 23}]

Formula

G.f.: x / Product_{n>=1} (1 + x^n)^(3*a(n)).
a(n+1) = (3/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d) * d * a(d) ) * a(n-k+1).
Showing 1-10 of 10 results.