cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A038183 One-dimensional cellular automaton 'sigma-minus' (Rule 90): 000,001,010,011,100,101,110,111 -> 0,1,0,1,1,0,1,0.

Original entry on oeis.org

1, 5, 17, 85, 257, 1285, 4369, 21845, 65537, 327685, 1114129, 5570645, 16843009, 84215045, 286331153, 1431655765, 4294967297, 21474836485, 73014444049, 365072220245, 1103806595329, 5519032976645, 18764712120593, 93823560602965, 281479271743489, 1407396358717445
Offset: 0

Views

Author

Antti Karttunen, Feb 09 1999

Keywords

Comments

Generation n (starting from the generation 0: 1) interpreted as a binary number.
Observation: for n <= 15, a(n) = smallest number whose Euler totient is divisible by 4^n. This is not true for n = 16. - Arkadiusz Wesolowski, Jul 29 2012
Orbit of 1 under iteration of Rule 90 = A048725 = (n -> n XOR 4n). - M. F. Hasler, Oct 09 2017

Examples

			Successive states are:
          1
         101
        10001
       1010101
      100000001
     10100000101
    1000100010001
   101010101010101
  10000000000000001
  ...
which when converted from binary to decimal give the sequence. - _N. J. A. Sloane_, Jul 21 2014
		

Crossrefs

Cf. A006977, A006978, A038184, A038185 (other cellular automata), A000215 (Fermat numbers).
Also alternate terms of A001317. Cf. A048710, A048720, A048757 (same 0/1-patterns interpreted in Fibonacci number system).
Equals 4*A089893(n)+1.
For right half of triangle (excluding the middle bit) see A245191.
Cf. Sierpiński's gasket, A047999.

Programs

  • Maple
    bit_n := (x,n) -> `mod`(floor(x/(2^n)),2);
    # A recursive, cellular automaton rule version:
    sigmaminus := proc(n) option remember: if (0 = n) then (1)
    else sum('((bit_n(sigmaminus(n-1),i)+bit_n(sigmaminus(n-1),i-2)) mod 2)*(2^i)', 'i'=0..(2*n)) fi: end:
  • Mathematica
    r = 24; c = CellularAutomaton[90, {{1}, 0}, r - 1]; Table[FromDigits[c[[k, r - k + 1 ;; r + k - 1]], 2], {k, r}] (* Arkadiusz Wesolowski, Jun 09 2013 *)
    a[ n_] := Sum[ 4^(n - k) Mod[Binomial[2 n, 2 k], 2], {k, 0, n}]; (* Michael Somos, Jun 30 2018 *)
    a[ n_] := If[ n < 0, 0, Product[ BitGet[n, k] (2^(2^(k + 1))) + 1, {k, 0, n}]]; (* Michael Somos, Jun 30 2018 *)
  • PARI
    vector(100,i,a=if(i>1,bitxor(a<<2,a),1)) \\ M. F. Hasler, Oct 09 2017
    
  • PARI
    {a(n) = sum(k=0, n, binomial(2*n, 2*k)%2 * 4^(n-k))}; /* Michael Somos, Jun 30 2018 */
  • Python
    a=1
    for n in range(55):
        print(a, end=",")
        a ^= a*4
    # Alex Ratushnyak, May 04 2012
    
  • Python
    def A038183(n): return sum((bool(~(m:=n<<1)&m-k)^1)<Chai Wah Wu, May 02 2023
    

Formula

a(n) = Product_{i>=0} bit_n(n, i)*(2^(2^(i+1)))+1: A direct algebraic formula!
a(n) = Sum_{k=0..n} (C(2*n, 2*k) mod 2)*4^(n-k). - Paul Barry, Jan 03 2005
a(2*n+1) = 5*a(2n); a(n+1) = a(n) XOR 4*a(n) where XOR is binary exclusive OR operator. - Philippe Deléham, Jun 18 2005
a(n) = A001317(2n). - Alex Ratushnyak, May 04 2012

A038184 State of one-dimensional cellular automaton 'sigma' (Rule 150): 000,001,010,011,100,101,110,111 -> 0,1,1,0,1,0,0,1 at generation n, converted to a decimal number.

Original entry on oeis.org

1, 7, 21, 107, 273, 1911, 5189, 28123, 65793, 460551, 1381653, 7039851, 17829905, 124809335, 340873541, 1840690907, 4295032833, 30065229831, 90195689493, 459568513131, 1172543963409, 8207807743863, 22286925370437
Offset: 0

Views

Author

Antti Karttunen, Feb 15 1999

Keywords

Comments

Generation n (starting from the generation 0: 1) interpreted as a binary number, but written in base 10.
Rows of the mod 2 trinomial triangle (A027907), interpreted as binary numbers: 1, 111, 10101, 1101011, ... (A118110). - Jacob A. Siehler, Aug 25 2006
See A071053 for number of ON cells. - N. J. A. Sloane, Jul 28 2014

Examples

			Bit patterns with "0" replaced by "." for visibilty [_Georg Fischer_, Dec 16 2021]:
  0:                    1
  1:                   111
  2:                  1.1.1
  3:                 11.1.11
  4:                1...1...1
  5:               111.111.111
  6:              1.1...1...1.1
  7:             11.11.111.11.11
  8:            1.......1.......1
  9:           111.....111.....111
  10:         1.1.1...1.1.1...1.1.1
  11:        11.1.11.11.1.11.11.1.11
  12:       1...1.......1.......1...1
  13:      111.111.....111.....111.111
  14:     1.1...1.1...1.1.1...1.1...1.1
  15:    11.11.11.11.11.1.11.11.11.11.11
		

Crossrefs

Cf. A006977, A006978, A038183, A038185 (other cellular automata).
This sequence, A071036 and A118110 are equivalent descriptions of the Rule 150 automaton.

Programs

  • Maple
    bit_n := (x,n) -> `mod`(floor(x/(2^n)),2);
    sigmagen := proc(n) option remember: if (0 = n) then (1)
    else sum('((bit_n(sigmagen(n-1),i)+bit_n(sigmagen(n-1),i-1)+bit_n(sigmagen(n-1),i-2)) mod 2)*(2^i)', 'i'=0..(2*n)) fi: end:
  • Mathematica
    f[n_] := Sum[2^k*Coefficient[ #, x, k], {k, 0, 2n}] & @ Expand[(1 + x + x^2)^n, Modulus -> 2] (* Jacob A. Siehler, Aug 25 2006 *)
  • PARI
    a(n) = subst(lift(Pol(Mod([1,1,1],2),'x)^n),'x,2);
    vector(23,n,a(n-1))  \\ Gheorghe Coserea, Jun 12 2016

A161903 Convert n into a sequence of binary digits, apply one step of the rule 110 cellular automaton, and interpret the results as a binary integer.

Original entry on oeis.org

0, 3, 6, 7, 12, 15, 14, 13, 24, 27, 30, 31, 28, 31, 26, 25, 48, 51, 54, 55, 60, 63, 62, 61, 56, 59, 62, 63, 52, 55, 50, 49, 96, 99, 102, 103, 108, 111, 110, 109, 120, 123, 126, 127, 124, 127, 122, 121, 112, 115, 118, 119, 124, 127, 126, 125, 104, 107, 110, 111, 100, 103, 98, 97, 192, 195, 198, 199, 204, 207, 206, 205, 216, 219, 222, 223, 220, 223, 218, 217, 240, 243, 246, 247, 252, 255, 254, 253, 248, 251, 254, 255, 244, 247, 242, 241, 224, 227, 230, 231, 236
Offset: 0

Views

Author

Ben Branman, Jan 30 2011

Keywords

Comments

a(a(a(...1))) (n times) gives A006978(n)

Examples

			For n=19, the evolution after one step is
0, 1, 0, 0, 1, 1  (n=19)
1, 1, 0, 1, 1, 1  (a(n)=55)
So a(n)=55.
		

Crossrefs

Programs

  • Mathematica
    a[n_] :=
    FromDigits[
      Drop[Part[CellularAutomaton[110, {IntegerDigits[n, 2], 0}], 1], -1],
       2];Table[a[n],{n,0,100}]

Formula

a(n) = A057889(A269174(A057889(n))). - Antti Karttunen, Jun 02 2018

A204371 Maximum period of cellular automaton rule 110 in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 1, 2, 1, 9, 14, 16, 7, 25, 110, 18, 351, 91, 295, 32, 578, 81, 285, 240, 630, 462, 1058, 552, 300, 351, 567, 2156, 1044, 1770, 2759, 2368, 1100, 969, 3920, 1584
Offset: 1

Views

Author

Ben Branman, Jan 14 2012

Keywords

Comments

a(n) >= A180001(n), and this sequence agrees with A180001 up to n=11.

Examples

			The 12 cell pattern
000100110111
001101111101
011111000111
110001001101
010011011111
110111110001
011100010011
110100110111
011101111100
110111000100
111101001101
000111011111
001101110001
011111010011
110001110111
010011011100
110111110100
111100011101
000100110111
Has period 18, which is the maximum possible, so a(12)=18
		

Crossrefs

Programs

  • Mathematica
    f[list_] := -Subtract @@ Flatten[Map[Position[#, #[[-1]]] &, NestWhileList[CellularAutomaton[110], list, Unequal, All], {0}]]; ma[n_] := Max[Table[f[IntegerDigits[i, 2, n]], {i, 0, 2^n - 1}]]; Table[ma[n], {n, 1, 10}]

Extensions

a(19)-a(36) from Lars Blomberg, Dec 24 2015

A038185 One-dimensional cellular automaton 'sigma' (Rule 150).

Original entry on oeis.org

1, 3, 5, 13, 17, 59, 81, 219, 257, 899, 1349, 3437, 4353, 15235, 20805, 56173, 65537, 229379, 344069, 876557, 1118225, 3913787, 5313617, 14399195, 16842753, 58949635, 88424453, 225271821, 285282321
Offset: 0

Views

Author

Antti Karttunen, Feb 09 1999

Keywords

Comments

Generation n (starting from the generation 0: 1) cut after the central 1-column and interpreted as a binary number.
Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 518", based on the 5-celled von Neumann neighborhood. Initialized with a single black (ON) cell at stage zero. - Robert Price, Feb 22 2017

Crossrefs

Cf. A006977, A006978, A038183, a(n) = floor(A038184[ n ]/2^n)

Programs

  • Maple
    bit_n := (x,n) -> `mod`(floor(x/(2^n)),2);
    sigmacut := proc(n): if (0 = n) then (1)
    else sum('((bit_n(sigmagen(n-1),i+1+n-1)+bit_n(sigmagen(n-1),i+n-1)+bit_n(sigmagen(n-1),i-1+n-1)) mod 2)*(2^i)', 'i'=0..(n)) fi: end:

A117999 Decimal number generated by the binary bits of the n-th generation of the Rule 110 elementary cellular automaton.

Original entry on oeis.org

1, 6, 28, 104, 496, 1568, 7360, 27520, 130304, 396800, 1848320, 6879232, 32706560, 103702528, 485867520, 1799258112, 8569421824, 25897336832, 120686641152, 448682000384, 2137705676800, 6768178495488, 31718320898048, 118691479945216, 558749693509632
Offset: 0

Views

Author

Eric W. Weisstein, Apr 08 2006

Keywords

Examples

			1;  1, 1, 0;  1, 1, 1, 0, 0;  1, 1, 0, 1, 0, 0, 0;  1, 1, 1, 1, 1, 0, 0, 0, 0; ...
		

Crossrefs

Cf. A006978.

Programs

  • Mathematica
    A117999list[nmax_]:=MapIndexed[FromDigits[ArrayPad[#1,#2-nmax-1],2]&,CellularAutomaton[110,{{1},0},{nmax,All}]];A117999list[25] (* Paolo Xausa, Oct 04 2023 *)

Formula

a(n) = A006978(n+1)*2^n. - Pontus von Brömssen, Oct 18 2022
Showing 1-6 of 6 results.