A007004 a(n) = (3*n)! / ((n+1)*(n!)^3).
1, 3, 30, 420, 6930, 126126, 2450448, 49884120, 1051723530, 22787343150, 504636071940, 11377249621920, 260363981732400, 6034149862347600, 141371511060715200, 3343436236585914480, 79726203788589122490, 1914992149823954412750, 46295775130831740013500
Offset: 0
Keywords
Examples
n=1, three walks: NE(SW), (SW)NE, N(SW)E. - _Shanzhen Gao_, Nov 09 2010
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..150
- Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d'Informatique de Paris Nord, Université Paris 13, December 2017.
Programs
-
Magma
[Factorial(3*n) / ((n+1)*Factorial(n)^3): n in [0..30]]; // Vincenzo Librandi, May 26 2011
-
Maple
seq(binomial(2*n,n)*binomial(3*n,n)/(n+1), n=0..20); # Zerinvary Lajos, May 27 2006
-
Mathematica
a[n_]:=(3*n)!/((n + 1)*(n!)^3); (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *) CoefficientList[Series[Hypergeometric2F1[1/3,2/3,2,27 x],{x,0,20}],x] (* Harvey P. Dale, Apr 07 2013 *) Table[Multinomial[n, n, n]/(n + 1), {n, 0, 12}] (* Emanuele Munarini, Oct 25 2016 *)
-
Maxima
makelist(multinomial_coeff(n,n,n)/(n+1),n,0,24); /* Emanuele Munarini, Oct 25 2016 */
Formula
a(n) = C(2*n,n)*C(3*n,n)/(n+1) = A000108(n)*C(3*n,n). - Zerinvary Lajos, May 27 2006
a(n) = (3*(3*n-1)*(3*n-2)*a(n-1))/(n*(n+1)) for n>0, a(0)=1. - Alois P. Heinz, Aug 13 2013
a(n) ~ 3^(3*n+1/2)/(2*Pi*n^2). - Vaclav Kotesovec, Sep 06 2016
Extensions
More terms from Zerinvary Lajos, May 27 2006
Comments