cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007047 Number of chains in power set of n-set.

Original entry on oeis.org

1, 3, 11, 51, 299, 2163, 18731, 189171, 2183339, 28349043, 408990251, 6490530291, 112366270379, 2107433393523, 42565371881771, 921132763911411, 21262618727925419, 521483068116543603, 13542138653027381291, 371206349277313644531
Offset: 0

Views

Author

N. J. A. Sloane, Roger B. Nelsen

Keywords

Comments

Stirling transform of A052849(n-1) = [1,2,4,12,48,...] is a(n-1) =[1,3,11,51,299,...]. - Michael Somos, Mar 04 2004
It is interesting to note that a chain in the power set of a set X can be thought of as a fuzzy subset of X and conversely. Chains originating with empty set are fuzzy subsets with empty core and those chains not ending with the whole set are with support strictly contained in X. - Venkat Murali (v.murali(AT)ru.ac.za), May 18 2005
Equals the binomial transform of A000629: (1, 2, 6, 26, 150, 1082, ...) and the double binomial transform of A000670: (1, 1, 3, 13, 75, 541, ...). - Gary W. Adamson, Aug 04 2009
Row sums of A038719. - Peter Bala, Jul 09 2014
Also the number of restricted barred preferential arrangements of an n-set having two bars, where one fixed section is a free section and the other two sections are restricted sections. - Sithembele Nkonkobe, Jun 16 2015
The number of all predictable outcomes of a race between a given number registered competitors, where clean finishes, dead heats (ties), disqualifications, cancellations and their combinations are all counted. (11 outcomes for two competitors, 51 for three, 299 for four, etc.. Example for two competitors shown below.) - Gergely Földvári, Jul 28 2024

Examples

			If there are two registered competitors, A and B, in a race, the total number of predictable outcomes counting all possibilities of clean finishes (f), dead heats (t), disqualifications (d), cancellations (c) and their combinations is 11 (eleven). Here is the breakdown: AfBf, BfAf, AtBt, AfBd, AfBc, BfAd, BfAc, AdBd, AcBc, AdBc, AcBd. - _Gergely Földvári_, Jul 28 2024
		

References

  • V. Murali, Counting fuzzy subsets of a finite set, preprint, Rhodes University, Grahamstown 6140, South Africa, 2003.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000629, A000629, A000670. Row sums of A038719.

Programs

  • Haskell
    a007047 = sum . a038719_row  -- Reinhard Zumkeller, Feb 05 2014
  • Maple
    P := proc(n,x) option remember; if n = 0 then 1 else
       (n*x+2*(1-x))*P(n-1,x)+x*(1-x)*diff(P(n-1,x),x);
       expand(%) fi end:
    A007047 := n -> 2^n*subs(x=1/2, P(n,x)):
    seq(A007047(n), n=0..19);  # Peter Luschny, Mar 07 2014
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 4,
          add(b(n-j)*binomial(n, j), j=1..n))
        end:
    a:= n-> `if`(n=0, 1, b(n)-1):
    seq(a(n), n=0..21);  # Alois P. Heinz, Feb 07 2020
  • Mathematica
    Table[LerchPhi[1/2, -n, 2]/2, {n, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
    Table[2*PolyLog[-n, 1/2] - 1 , {n, 0, 19}] (* Jean-François Alcover, Aug 14 2013 *)
    With[{nn=20},CoefficientList[Series[Exp[2x]/(2-Exp[x]),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Dec 08 2015 *)
    Table[-(-1)^k HurwitzLerchPhi[2, -k, -1], {k, 0, 30}] (* Federico Provvedi,Sep 05 2020 *)
    a[n_]:= a[n] = 2^n + Sum[Binomial[n, k]*a[k], {k, 0, n-1}]; Table[a[n], {n, 0, 20}] (* Rajesh Kumar Mohapatra, Jul 02 2025 *)
    a[0] = 1; a[n_]:= a[n] = 2^n + Sum[Binomial[n, k]*a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 20}] (* Rajesh Kumar Mohapatra, Jul 02 2025 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(subst((y+1)^2/(1-y),y,exp(x+x*O(x^n))-1),n));
    
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(exp(2*x)/(2-exp(x)))) \\ Joerg Arndt, Aug 14 2013
    

Formula

E.g.f.: exp(2*x)/(2-exp(x)).
a(n) = Sum_{k>=1} (k+1)^n/2^k = 2*A000629(n)-1. - Benoit Cloitre, Sep 08 2002
a(n) = one less than sum of quotients with numerator 4 times (n!)((k_1 + k_2 + ... + k_n)!) and with denominator (k_1!k_2!...k_n!)(1!^k_1 2!^k_2...n!^k_n) where the sum is taken over all partitions 1*k_1 + 2*k_2 + ... + n*k_n = n. E.g. a(1) = 3 because the membership value of x to {x} is either 1, alpha with 0 < alpha < 1 or 0. a(2) = 11 since the membership values x and y to {x, y} are 1 >= alpha >= beta >= 0 for {empty set, x, y} in that order or {empty set, y, x} exercising all possible > or = . - Venkat Murali (v.murali(AT)ru.ac.za), May 18 2005
G.f.: 1/Q(0), where Q(k) = 1 - 3*x*(k+1) - 2*x^2*(k+1)*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 02 2013
a(n) ~ 2*n! / (log(2))^(n+1). - Vaclav Kotesovec, Sep 27 2017
a(n) = 4 * A000670(n) - 1 for n > 0. - Alois P. Heinz, Feb 07 2020
a(n) = -(-1)^n Phi(2,-n,-1), where Phi(z,s,a) is the Lerch zeta function. - Federico Provvedi, Sep 05 2020
a(n) = 1 + 2 * Sum_{k=0..n-1} (-1)^(n-k-1) * binomial(n,k) * a(k). - Ilya Gutkovskiy, Apr 28 2021
From Rajesh Kumar Mohapatra, Jul 02 2025: (Start)
a(n) = 2*A000629(n) - 1.
a(n) = 2^n + Sum_{k=0..n-1} binomial(n,k) * a(k).
a(n) = 2^n + Sum_{k=1..n} binomial(n,k) * a(n-k), a(0) = 1. (End)