A007204 Crystal ball sequence for D_4 lattice.
1, 25, 169, 625, 1681, 3721, 7225, 12769, 21025, 32761, 48841, 70225, 97969, 133225, 177241, 231361, 297025, 375769, 469225, 579121, 707281, 855625, 1026169, 1221025, 1442401, 1692601, 1974025, 2289169, 2640625, 3031081, 3463321, 3940225, 4464769, 5040025
Offset: 0
References
- Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 53.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Index entries for crystal ball sequences
- Index entries for sequences related to D_4 lattice
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(2*n^2+2*n+1)^2: n in [0..40]]; // Vincenzo Librandi, Nov 18 2016
-
Maple
A007204:=n->(2*n^2+2*n+1)^2; seq(A007204(n), n=0..30);
-
Mathematica
Table[(2n^2+2n+1)^2,{n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,25,169,625,1681},40] (* Harvey P. Dale, Mar 03 2013 *)
-
PARI
a(n)=(2*n^2+2*n+1)^2 \\ Charles R Greathouse IV, Feb 08 2017
Formula
G.f.: (1 + 54*x^2 + 20*x + 20*x^3 + x^4)/(1-x)^5.
a(0)=1, a(1)=25, a(2)=169, a(3)=625, a(4)=1681, a(n)=5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Mar 03 2013
Sum_{n>=0} 1/a(n) = Pi*(sinh(Pi) - Pi)/(2*(cosh(Pi) + 1)) = 1.0487582722070177... - Ilya Gutkovskiy, Nov 18 2016
a(n) = A001844(n)^2 = (2*n^2+2*n+1)^2. - Bruce J. Nicholson, May 15 2017
E.g.f.: exp(x)*(1 + 24*x + 60*x^2 + 32*x^3 + 4*x^4). - Stefano Spezia, Jun 06 2021
Extensions
More terms from Harvey P. Dale, Mar 03 2013
Comments