cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007204 Crystal ball sequence for D_4 lattice.

Original entry on oeis.org

1, 25, 169, 625, 1681, 3721, 7225, 12769, 21025, 32761, 48841, 70225, 97969, 133225, 177241, 231361, 297025, 375769, 469225, 579121, 707281, 855625, 1026169, 1221025, 1442401, 1692601, 1974025, 2289169, 2640625, 3031081, 3463321, 3940225, 4464769, 5040025
Offset: 0

Views

Author

N. J. A. Sloane and J. H. Conway, Apr 28 1994

Keywords

Comments

Equals binomial transform of [1, 24, 120, 192, 96, 0, 0, 0, ...]. - Gary W. Adamson, Aug 13 2009
Hypotenuse of Pythagorean triangles with hypotenuse a square: A057769(n)^2 + A069074(n-1)^2 = a(n)^2. - Martin Renner, Nov 12 2011
Numbers n such that n*x^4 + x^2 + 1 is reducible. - Arkadiusz Wesolowski, Nov 04 2013

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 53.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(2*n^2+2*n+1)^2: n in [0..40]]; // Vincenzo Librandi, Nov 18 2016
    
  • Maple
    A007204:=n->(2*n^2+2*n+1)^2; seq(A007204(n), n=0..30);
  • Mathematica
    Table[(2n^2+2n+1)^2,{n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,25,169,625,1681},40] (* Harvey P. Dale, Mar 03 2013 *)
  • PARI
    a(n)=(2*n^2+2*n+1)^2 \\ Charles R Greathouse IV, Feb 08 2017

Formula

G.f.: (1 + 54*x^2 + 20*x + 20*x^3 + x^4)/(1-x)^5.
a(0)=1, a(1)=25, a(2)=169, a(3)=625, a(4)=1681, a(n)=5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Mar 03 2013
Sum_{n>=0} 1/a(n) = Pi*(sinh(Pi) - Pi)/(2*(cosh(Pi) + 1)) = 1.0487582722070177... - Ilya Gutkovskiy, Nov 18 2016
a(n) = A016754(n) + A060300(n). - Bruce J. Nicholson, Apr 14 2017
a(n) = A001844(n)^2 = (2*n^2+2*n+1)^2. - Bruce J. Nicholson, May 15 2017
a(n) = A000583(n+1) + A099761(n) + 2*A005563(n-1)*A000290(n). - Charlie Marion, Jan 14 2021
E.g.f.: exp(x)*(1 + 24*x + 60*x^2 + 32*x^3 + 4*x^4). - Stefano Spezia, Jun 06 2021

Extensions

More terms from Harvey P. Dale, Mar 03 2013