cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007487 Sum of 9th powers.

Original entry on oeis.org

0, 1, 513, 20196, 282340, 2235465, 12313161, 52666768, 186884496, 574304985, 1574304985, 3932252676, 9092033028, 19696532401, 40357579185, 78800938560, 147520415296, 266108291793, 464467582161, 787155279940, 1299155279940, 2093435326521, 3300704544313
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 815.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 9 of array A103438.

Programs

  • Magma
    [&+[n^9: n in [0..m]]: m in [0..22]]; // Bruno Berselli, Aug 23 2011
    
  • Maple
    [seq(add(i^9,i=1..n),n=0..40)];
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^9 od: seq(a[n], n=0..22); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    lst={};s=0;Do[s=s+n^9;AppendTo[lst, s], {n, 10^2}];lst..or..Table[Sum[k^9, {k, 1, n}], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
    Accumulate[Range[0,30]^9] (* Harvey P. Dale, Oct 09 2016 *)
  • PARI
    a(n)=n^2*(n+1)^2*(n^2+n-1)*(2*n^4+4*n^3-n^2-3*n+3)/20 \\ Charles R Greathouse IV, Oct 07 2015
  • Python
    A007487_list, m = [0], [362880, -1451520, 2328480, -1905120, 834120, -186480, 18150, -510, 1, 0, 0]
    for _ in range(10**2):
        for i in range(10):
            m[i+1]+= m[i]
        A007487_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
    

Formula

a(n) = n^2*(n+1)^2*(n^2+n-1)*(2*n^4+4*n^3-n^2-3*n+3)/20 (see MathWorld, Power Sum, formula 39). a(n) = n*A000542(n) - Sum_{i=0..n-1} A000542(i). - Bruno Berselli, Apr 26 2010
G.f.: x*(1 + 502*x + 14608*x^2 + 88234*x^3 + 156190*x^4 + 88234*x^5 + 14608*x^6 + 502*x^7 + x^8)/(1-x)^11. a(n) = a(-n-1). - Bruno Berselli, Aug 23 2011
a(n) = -Sum_{j=1..9} j*Stirling1(n+1,n+1-j)*Stirling2(n+9-j,n). - Mircea Merca, Jan 25 2014
a(n) = (16/5)*A000217(n)^5 - 4*A000217(n)^4 + (12/5)*A000217(n)^3 - (3/5)*A000217(n)^2. - Michael Raney, Mar 14 2016
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n > 10. - Wesley Ivan Hurt, Dec 21 2016
a(n) = 288*A005585(n-1)^2 + 1728*A108679(n-3) + A062392(n)^2. - Yasser Arath Chavez Reyes, May 11 2024
a(n) = Sum_{i=1..n} J_9(i)*floor(n/i), where J_9 is A069094. - Ridouane Oudra, Jul 17 2025