A003465
Number of ways to cover an n-set.
Original entry on oeis.org
1, 1, 5, 109, 32297, 2147321017, 9223372023970362989, 170141183460469231667123699502996689125, 57896044618658097711785492504343953925273862865136528166133547991141168899281
Offset: 0
Let n=2, S={a,b}, P={a,b,ab}. There are five subsets of P whose union is S: {ab}, {a,b}, {a,ab}, {b,ab}, {a,b,ab}. - _Marc LeBrun_, Nov 10 2010
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 165.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. G. Wagner, Covers of finite sets, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 515-520.
- Alois P. Heinz, Table of n, a(n) for n = 0..11
- D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
- T. Hearne and C. G. Wagner, Minimal covers of finite sets, Discr. Math. 5 (1973), 247-251.
- Martin Klazar, Extremal problems for ordered hypergraphs, arXiv:math/0305048 [math.CO], 2003.
- Liwen Ma, Classification of coverings in the finite approximation spaces, Inf. Sci. 276 (2014) 31-41
- A. J. Macula, Covers of a finite set, Math. Mag., 67 (1994), 141-144.
- S. Spasovski and A. M. Bogdanova, Optimization of the Polynomial Greedy Solution for the Set Covering Problem, 2013, 10th Conference for Informatics and Information Technology (CIIT 2013).
- Eric Weisstein's World of Mathematics, Cover.
- Yoad Winter and Remko Scha, Plurals, draft chapter for the Wiley-Blackwell Handbook of Contemporary Semantics - second edition, edited by Shalom Lappin and Chris Fox, 2014.
- Ping Zhou, Covering rough sets based on neighborhoods: an approach without using neighborhoods, Int. J. Approx. Reas. 52 (2011) 461-472, Section 3
-
a:= n-> add((-1)^k * binomial(n, k)*2^(2^(n-k))/2, k=0..n):
seq(a(n), n=0..11); # Alois P. Heinz, Aug 24 2014
-
Table[Sum[(-1)^j Binomial[n,j] 2^(2^(n-j)-1),{j,0,n}],{n,0,10}] (* Geoffrey Critzer, Jun 26 2013 *)
-
{a(n) = sum(k=0, n, (-1)^k * n!/k!/(n-k)! * 2^(2^(n-k))) / 2} /* Michael Somos, Jun 14 1999 */
A003181
Number of P-equivalence classes of nondegenerate Boolean functions of n variables.
Original entry on oeis.org
2, 2, 8, 68, 3904, 37329264, 25626412300941056, 67516342973185974302549277749387264, 2871827610052485009904013737758920847602293486924450772201235462734479360
Offset: 0
From _Gus Wiseman_, Aug 05 2019: (Start)
Non-isomorphic representatives of the a(0) = 2 through a(2) = 8 sets of subsets:
{} {{1}} {{1,2}}
{{}} {{},{1}} {{1},{2}}
{{},{1,2}}
{{2},{1,2}}
{{},{1},{2}}
{{},{2},{1,2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
(End)
- S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 and 214.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
b:= proc(n, i, l) `if`(n=0, 2^(w-> add(mul(2^igcd(t, l[h]),
h=1..nops(l)), t=1..w)/w)(ilcm(l[])), `if`(i<1, 0,
add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i)))
end:
a:= n-> `if`(n=0, 2, b(n$2, [])-b(n-1$2, [])):
seq(a(n), n=0..8); # Alois P. Heinz, Aug 14 2019
-
b[n_, i_, l_] := If[n == 0, 2^Function[w, Sum[Product[2^GCD[t, l[[h]]], {h, 1, Length[l]}], {t, 1, w}]/w][If[l == {}, 1, LCM @@ l]], If[i < 1, 0, Sum[b[n - i*j, i - 1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]]];
a[n_] := If[n == 0, 2, b[n, n, {}] - b[n - 1, n - 1, {}]];
a /@ Range[0, 8] (* Jean-François Alcover, Apr 11 2020, after Alois P. Heinz *)
A055152
Proper covers of an unlabeled n-set.
Original entry on oeis.org
0, 1, 14, 956, 9331320, 6406603065901952, 16879085743296493569230716352778240, 717956902513121252476003434439730211883694285987816199468264943161704448
Offset: 1
-
b:= proc(n, i, l) `if`(n=0, 2^(w-> add(mul(2^igcd(t, l[h]),
h=1..nops(l)), t=1..w)/w)(ilcm(l[])), `if`(i<1, 0,
add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i)))
end:
a:= n-> (b(n$2, [])-2*b(n-1$2, []))/4:
seq(a(n), n=1..8); # Alois P. Heinz, Aug 14 2019
-
b[n_] := Sum[1/Function[p, Product[Function[c, j^c*c!][Coefficient[p, x, j]], {j, 1, Exponent[p, x]}]][Total[x^l]]*2^(Function[w, Sum[Product[ 2^GCD[t, l[[i]]], {i, 1, Length[l]}], {t, 1, w}]/w][If[l == {}, 1, LCM @@ l]]), {l, IntegerPartitions[n]}];
a[n_] := (b[n] - 2 b[n - 1])/4;
a /@ Range[8] (* Jean-François Alcover, Feb 19 2020, after Alois P. Heinz in A000612 *)
A095421
Triangle read by rows: T(n,m) = number of m-block proper covers (without empty blocks and without multiple blocks) of a labeled n-set (n>=2, 2<=m<=2^n-2).
Original entry on oeis.org
1, 6, 17, 15, 6, 1, 25, 230, 861, 1918, 2975, 3428, 3003, 2002, 1001, 364, 91, 14, 1, 90, 2125, 20930, 127701, 568820, 2003635, 5820750, 14282125, 30030000, 54620475, 86490950, 119759325, 145422600, 155117515, 145422675, 119759850, 86493225
Offset: 2
1;
6,17,15,6,1;
25,230,861,1918,2975,3428,3003,2002,1001,364,91,14,1;
...
-
T[n_, m_] := Sum[(-1)^(n - i)*Binomial[n, i]*Binomial[2^i - 1, m], {i, 1, n}] - Binomial[2^n - 2, m - 1]; Table[T[n, m], {n, 2, 10}, {m, 2, 2^n - 2}] // Flatten (* G. C. Greubel, Oct 07 2017 *)
-
for(n=2,6, for(m=2, 2^n -2, print1(sum(j=1,n, (-1)^(n-j)* binomial(n, j)*binomial(2^j -1, m)), ", "))) \\ G. C. Greubel, Oct 07 2017
A095423
Number of proper T_0-covers of an n-set.
Original entry on oeis.org
0, 1, 42, 15654, 1073421588, 4611685989440629944, 85070591730234615704434641716516893512, 28948022309329048855892746252171976959574390130279817915318273546782086570304
Offset: 1
-
a(n)=sum(k=0,n, (2*stirling(n+1, k+1, 1) - stirling(n, k,1 )) * 2^(2^k-2) );
vector(10,n,a(n)) /* show terms */
A055127
Triangle T(n,k) of numbers of proper k-covers of an unlabeled n-set, k=1..2^n-2.
Original entry on oeis.org
0, 1, 0, 2, 5, 4, 2, 1, 0, 4, 19, 58, 113, 168, 193, 171, 119, 68, 29, 10, 3, 1, 0, 6, 53, 325, 1551, 6007, 19533, 54119, 128936, 266085, 478223, 751487, 1035609, 1254303, 1336855, 1254307, 1035622, 751526, 478320, 266272, 129226, 54484, 19898, 6297
Offset: 2
[0, 1], [0, 2, 5, 4, 2, 1], [0, 4, 19, 58, 113, 168, 193, 171, 119, 68, 29, 10, 3, 1], ...; There are 113 proper 5-covers of an unlabeled 4-set.
Showing 1-6 of 6 results.
Comments