cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003465 Number of ways to cover an n-set.

Original entry on oeis.org

1, 1, 5, 109, 32297, 2147321017, 9223372023970362989, 170141183460469231667123699502996689125, 57896044618658097711785492504343953925273862865136528166133547991141168899281
Offset: 0

Views

Author

Keywords

Comments

Let S be an n-element set, and let P be the set of all nonempty subsets of S. Then a(n) = number of subsets of P whose union is S.
Including the empty set doubles the entries, and we get A000371.
For disjoint covers see A000110. - Manfred Boergens, May 13 2024
For disjoint covers which may include one empty set see A186021. - Manfred Boergens, Mar 09 2025

Examples

			Let n=2, S={a,b}, P={a,b,ab}. There are five subsets of P whose union is S: {ab}, {a,b}, {a,ab}, {b,ab}, {a,b,ab}. - _Marc LeBrun_, Nov 10 2010
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 165.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • C. G. Wagner, Covers of finite sets, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 515-520.

Crossrefs

Cf. A007537, A000371, A055154 (row sums), A369950 (diagonal for n>=1), A055621 (unlabeled case).
Column sums of A326914 and of A326962.

Programs

  • Maple
    a:= n-> add((-1)^k * binomial(n, k)*2^(2^(n-k))/2, k=0..n):
    seq(a(n), n=0..11);  # Alois P. Heinz, Aug 24 2014
  • Mathematica
    Table[Sum[(-1)^j Binomial[n,j] 2^(2^(n-j)-1),{j,0,n}],{n,0,10}] (* Geoffrey Critzer, Jun 26 2013 *)
  • PARI
    {a(n) = sum(k=0, n, (-1)^k * n!/k!/(n-k)! * 2^(2^(n-k))) / 2} /* Michael Somos, Jun 14 1999 */

Formula

a(n) = Sum_{k>=0} (-1)^k * binomial(n, k) * 2^(2^(n-k)) / 2. - Michael Somos, Jun 14 1999
E.g.f.: (1/2)*Sum_{n>=0} exp((2^n-1)*x)*log(2)^n/n!. - Vladeta Jovovic, May 30 2004
a(n) ~ 2^(2^n - 1). - Vaclav Kotesovec, Jul 02 2016

Extensions

More terms and comments from Michael Somos
Entry revised by N. J. A. Sloane, Nov 23 2010

A003181 Number of P-equivalence classes of nondegenerate Boolean functions of n variables.

Original entry on oeis.org

2, 2, 8, 68, 3904, 37329264, 25626412300941056, 67516342973185974302549277749387264, 2871827610052485009904013737758920847602293486924450772201235462734479360
Offset: 0

Views

Author

Keywords

Comments

Also the number of non-isomorphic sets of subsets of {1..n} with union {1..n}. - Gus Wiseman, Aug 05 2019

Examples

			From _Gus Wiseman_, Aug 05 2019: (Start)
Non-isomorphic representatives of the a(0) = 2 through a(2) = 8 sets of subsets:
  {}    {{1}}     {{1,2}}
  {{}}  {{},{1}}  {{1},{2}}
                  {{},{1,2}}
                  {{2},{1,2}}
                  {{},{1},{2}}
                  {{},{2},{1,2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
(End)
		

References

  • S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 and 214.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n, i, l) `if`(n=0, 2^(w-> add(mul(2^igcd(t, l[h]),
          h=1..nops(l)), t=1..w)/w)(ilcm(l[])), `if`(i<1, 0,
          add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i)))
        end:
    a:= n-> `if`(n=0, 2, b(n$2, [])-b(n-1$2, [])):
    seq(a(n), n=0..8);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    b[n_, i_, l_] := If[n == 0, 2^Function[w, Sum[Product[2^GCD[t, l[[h]]], {h, 1, Length[l]}], {t, 1, w}]/w][If[l == {}, 1, LCM @@ l]], If[i < 1, 0, Sum[b[n - i*j, i - 1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]]];
    a[n_] := If[n == 0, 2, b[n, n, {}] - b[n - 1, n - 1, {}]];
    a /@ Range[0, 8] (* Jean-François Alcover, Apr 11 2020, after Alois P. Heinz *)

Formula

a(n) = A003180(n) - A003180(n-1), for n >= 1. - Christian Sievers, Jul 22 2016
a(n) = 2 * A055621(n). - Gus Wiseman, Aug 05 2019

Extensions

More terms from Christian Sievers, Jul 22 2016
Definition clarified by Ivo Timoteo, Mar 14 2017

A055152 Proper covers of an unlabeled n-set.

Original entry on oeis.org

0, 1, 14, 956, 9331320, 6406603065901952, 16879085743296493569230716352778240, 717956902513121252476003434439730211883694285987816199468264943161704448
Offset: 1

Views

Author

Vladeta Jovovic, Jun 14 2000

Keywords

Crossrefs

See A007537 for labeled case. Cf. A055621.

Programs

  • Maple
    b:= proc(n, i, l) `if`(n=0, 2^(w-> add(mul(2^igcd(t, l[h]),
          h=1..nops(l)), t=1..w)/w)(ilcm(l[])), `if`(i<1, 0,
          add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i)))
        end:
    a:= n->  (b(n$2, [])-2*b(n-1$2, []))/4:
    seq(a(n), n=1..8);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    b[n_] := Sum[1/Function[p, Product[Function[c, j^c*c!][Coefficient[p, x, j]], {j, 1, Exponent[p, x]}]][Total[x^l]]*2^(Function[w, Sum[Product[ 2^GCD[t, l[[i]]], {i, 1, Length[l]}], {t, 1, w}]/w][If[l == {}, 1, LCM @@ l]]), {l, IntegerPartitions[n]}];
    a[n_] := (b[n] - 2 b[n - 1])/4;
    a /@ Range[8] (* Jean-François Alcover, Feb 19 2020, after Alois P. Heinz in A000612 *)

Formula

a(n) = (A003180(n) - 2*A003180(n-1))/4.
Apparently a(n) = A002857(n) - A000612(n-1). - R. J. Mathar, Apr 22 2007

Extensions

More terms from David Wasserman, Mar 21 2002

A095421 Triangle read by rows: T(n,m) = number of m-block proper covers (without empty blocks and without multiple blocks) of a labeled n-set (n>=2, 2<=m<=2^n-2).

Original entry on oeis.org

1, 6, 17, 15, 6, 1, 25, 230, 861, 1918, 2975, 3428, 3003, 2002, 1001, 364, 91, 14, 1, 90, 2125, 20930, 127701, 568820, 2003635, 5820750, 14282125, 30030000, 54620475, 86490950, 119759325, 145422600, 155117515, 145422675, 119759850, 86493225
Offset: 2

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 04 2004

Keywords

Examples

			1;
6,17,15,6,1;
25,230,861,1918,2975,3428,3003,2002,1001,364,91,14,1;
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, m_] := Sum[(-1)^(n - i)*Binomial[n, i]*Binomial[2^i - 1, m], {i, 1, n}] - Binomial[2^n - 2, m - 1]; Table[T[n, m], {n, 2, 10}, {m, 2, 2^n - 2}] // Flatten (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    for(n=2,6, for(m=2, 2^n -2, print1(sum(j=1,n, (-1)^(n-j)* binomial(n, j)*binomial(2^j -1, m)), ", "))) \\ G. C. Greubel, Oct 07 2017

Formula

T(n, m) = Sum((-1)^(n-i)*binomial(n, i)*binomial(2^i-1, m), i=1..n) - binomial(2^n-2, m-1).

A095423 Number of proper T_0-covers of an n-set.

Original entry on oeis.org

0, 1, 42, 15654, 1073421588, 4611685989440629944, 85070591730234615704434641716516893512, 28948022309329048855892746252171976959574390130279817915318273546782086570304
Offset: 1

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 04 2004

Keywords

Comments

The next term has 154 decimal digits.

Crossrefs

Row sums of A095422, A095421.

Programs

  • PARI
    a(n)=sum(k=0,n, (2*stirling(n+1, k+1, 1) - stirling(n, k,1 )) * 2^(2^k-2) );
    vector(10,n,a(n)) /* show terms */

Formula

a(n) = Sum(Stirling1(n, k)*A007537(k), k=1..n).
a(n) = Sum((2*Stirling1(n+1, k+1)-Stirling1(n, k))*2^(2^k-2), k=0..n).

A055127 Triangle T(n,k) of numbers of proper k-covers of an unlabeled n-set, k=1..2^n-2.

Original entry on oeis.org

0, 1, 0, 2, 5, 4, 2, 1, 0, 4, 19, 58, 113, 168, 193, 171, 119, 68, 29, 10, 3, 1, 0, 6, 53, 325, 1551, 6007, 19533, 54119, 128936, 266085, 478223, 751487, 1035609, 1254303, 1336855, 1254307, 1035622, 751526, 478320, 266272, 129226, 54484, 19898, 6297
Offset: 2

Views

Author

Vladeta Jovovic, Jun 14 2000

Keywords

Examples

			[0, 1], [0, 2, 5, 4, 2, 1], [0, 4, 19, 58, 113, 168, 193, 171, 119, 68, 29, 10, 3, 1], ...; There are 113 proper 5-covers of an unlabeled 4-set.
		

Crossrefs

Cf. A052265, A055080, A007537. Row sums give A055152.
Showing 1-6 of 6 results.