cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007556 Number of 8-ary trees with n vertices.

Original entry on oeis.org

1, 1, 8, 92, 1240, 18278, 285384, 4638348, 77652024, 1329890705, 23190029720, 410333440536, 7349042994488, 132969010888280, 2426870706415800, 44627576949364104, 826044435409399800, 15378186970730687400, 287756293703544823872, 5409093674555090316300
Offset: 0

Views

Author

Keywords

Comments

Shifts left when convolved three times.
From Wolfdieter Lang, Sep 14 2007: (Start)
a(n), n >= 1, enumerates octic (8-ary) trees (rooted, ordered, incomplete) with n vertices (including the root).
Pfaff-Fuss-Catalan sequence C^{m}_n for m = 8. See the Graham et al. reference, p. 347. eq. 7.66. See also the Pólya-Szegő reference.
Also 8-Raney sequence. See the Graham et al. reference, p. 346-7.
(End)
This is instance k = 8 of the generalized Catalan family {C(k, n)}A130564.%20-%20_Wolfdieter%20Lang">{n>=0} given in a comment of A130564. - _Wolfdieter Lang, Feb 05 2024

Examples

			There are a(2) = 8 octic trees (vertex degree less than or equal to 8 and 8 possible branchings) with 2 vertices (one of them the root). Adding one more branch (one more vertex) to these 8 trees yields 8*8 + binomial(8, 2) = 92 = a(3) such trees.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, pp. 200, 347.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, Heidelberg, New York, 2 vols., 1972, Vol. 1, problem 211, p. 146 with solution on p. 348.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Seventh column of triangle A062993.
Cf. A130564.

Programs

  • Haskell
    a007556 0 = 1
    a007556 n = a007318' (8 * n) (n - 1) `div` n
    -- Reinhard Zumkeller, Jul 30 2013
    
  • Magma
    [Binomial(8*n, n)/(7*n+1): n in [0..20]]; // Vincenzo Librandi, Apr 02 2015
    
  • Maple
    seq(binomial(8*n+1,n)/(8*n+1),n=0..30); # Robert FERREOL, Apr 01 2015
    n:=30: G:=series(RootOf(g = 1+x*g^8, g),x=0,n+1): seq(coeff(G,x,k),k=0..n); # Robert FERREOL, Apr 01 2015
  • Mathematica
    Table[Binomial[8n, n]/(7n + 1), {n, 0, 20}] (* Harvey P. Dale, Dec 24 2012 *)
  • PARI
    vector(100, n, n--; binomial(8*n, n)/(7*n+1)) \\ Altug Alkan, Oct 14 2015

Formula

a(n) = binomial(8*n, n)/(7*n+1) = binomial(8*n+1, n)/(8*n+1) = A062993(n+6,6).
O.g.f.: A(x) = 1 + x*A(x)^8 = 1/(1-x*A(x)^7).
a(0) = 1; a(n) = Sum_{i1 + i2 + .. i8 = n - 1} a(i1)*a(i2)*...*a(i8) for n >= 1. - Robert FERREOL, Apr 01 2015
a(n) = binomial(8*n, n - 1)/n for n >= 1, a(0) = 1 (from the Lagrange series of the o.g.f. A(x) with its above given implicit equation).
From Karol A. Penson, Mar 26 2015: (Start)
In Maple notation,
e.g.f.: hypergeom([1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8], [2/7, 3/7, 4/7, 5/7, 6/7, 1, 8/7],(2^24/7^7)*z);
o.g.f.: hypergeom([1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8], [2/7, 3/7, 4/7, 5/7, 6/7, 8/7],(2^24/7^7)*z);
a(n) are special values of Jacobi polynomials, in Maple notation:
a(n) = JacobiP(n - 1, 7*n + 1, -n, 1)/n, n = 1, 2, ...
(End)
From Peter Bala, Oct 14 2015: (Start)
A(x)^2 is o.g.f. for A234461; A(x)^3 is o.g.f. for A234462;
A(x)^4 is o.g.f. for A234463; A(x)^5 is o.g.f. for A234464;
A(x)^6 is o.g.f. for A234465; A(x)^7 is o.g.f. for A234466;
A(x)^9 is o.g.f. for A234467. (End)
a(n) ~ 2^(24*n + 1)/(sqrt(Pi)*7^(7*n + 3/2)*n^(3/2)). - Ilya Gutkovskiy, Feb 07 2017
D-finite with recurrence: 7*n*(7*n-3)*(7*n+1)*(7*n-2)*(7*n-5)*(7*n-1)*(7*n-4)*a(n) -128*(8*n-5)*(4*n-1)*(8*n-7)*(2*n-1)*(8*n-1)*(4*n-3)*(8*n-3)*a(n-1)=0. - R. J. Mathar, Feb 20 2020
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^15). - Seiichi Manyama, Jun 16 2025