cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 42 results. Next

A251578 E.g.f.: exp(8*x*G(x)^7) / G(x)^7 where G(x) = 1 + x*G(x)^8 is the g.f. of A007556.

Original entry on oeis.org

1, 1, 8, 176, 6896, 397888, 30584128, 2948178304, 342418882688, 46582810477568, 7268517454045184, 1279982790328858624, 251155319283837571072, 54344039464582833577984, 12855960226911391575670784, 3301167001281829056285458432, 914476489427649778704952819712
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 8*x^2/2! + 176*x^3/3! + 6896*x^4/4! + 397888*x^5/5! +...
such that A(x) = exp(8*x*G(x)^7) / G(x)^7
where G(x) = 1 + x*G(x)^8 is the g.f. of A007556:
G(x) = 1 + x + 8*x^2 + 92*x^3 + 1240*x^4 + 18278*x^5 + 285384*x^6 +...
Note that
A'(x) = exp(8*x*G(x)^7) = 1 + 8*x + 176*x^2/2! + 6896*x^3/3! +...
LOGARITHMIC DERIVATIVE.
The logarithm of the e.g.f. begins:
log(A(x)) = x + 7*x^2/2 + 77*x^3/3 + 1015*x^4/4 + 14763*x^5/5 +...
and so A'(x)/A(x) = G(x)^7.
TABLE OF POWERS OF E.G.F.
Form a table of coefficients of x^k/k! in A(x)^n as follows.
n=1: [1, 1,   8,  176,   6896,  397888,  30584128,  2948178304, ...];
n=2: [1, 2,  18,  400,  15584,  892896,  68217472,  6543183488, ...];
n=3: [1, 3,  30,  678,  26352, 1501344, 114073632, 10890011520, ...];
n=4: [1, 4,  44, 1016,  39512, 2241472, 169479808, 16107837568, ...];
n=5: [1, 5,  60, 1420,  55400, 3133560, 235931200, 22331561600, ...];
n=6: [1, 6,  78, 1896,  74376, 4200048, 315106128, 29713474944, ...];
n=7: [1, 7,  98, 2450,  96824, 5465656, 408881872, 38425052848, ...];
n=8: [1, 8, 120, 3088, 123152, 6957504, 519351232, 48658878080, ...]; ...
in which the main diagonal begins (see A251587):
[1, 2, 30, 1016, 55400, 4200048, 408881872, 48658878080, ...]
and is given by the formula:
[x^n/n!] A(x)^(n+1) = 8^(n-6) * (n+1)^(n-7) * (16807*n^6 + 143031*n^5 + 525875*n^4 + 1074745*n^3 + 1294846*n^2 + 876856*n + 262144) for n>=0.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,1,Table[Sum[8^k * n!/k! * Binomial[8*n-k-8, n-k] * (k-1)/(n-1),{k,0,n}],{n,2,20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n) = local(G=1);for(i=1,n,G=1+x*G^8 +x*O(x^n)); n!*polcoeff(exp(8*x*G^7)/G^7, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = if(n==0|n==1, 1, sum(k=0, n, 8^k * n!/k! * binomial(8*n-k-8,n-k) * (k-1)/(n-1) ))}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^8 be the g.f. of A007556, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^7.
(2) A'(x) = exp(8*x*G(x)^7).
(3) A(x) = exp( Integral G(x)^7 dx ).
(4) A(x) = exp( Sum_{n>=1} A234466(n-1)*x^n/n ), where A234466(n-1)(n) = binomial(8*n-2,n)/(7*n-1).
(5) A(x) = F(x/A(x)) where F(x) is the e.g.f. of A251588.
(6) A(x) = Sum_{n>=0} A251588(n)*(x/A(x))^n/n! and
(7) [x^n/n!] A(x)^(n+1) = (n+1)*A251588(n),
where A251588(n) = 8^(n-6) * (n+1)^(n-8) * (16807*n^6 + 143031*n^5 + 525875*n^4 + 1074745*n^3 + 1294846*n^2 + 876856*n + 262144).
a(n) = Sum_{k=0..n} 8^k * n!/k! * binomial(8*n-k-8, n-k) * (k-1)/(n-1) for n>1.
Recurrence: 7*(7*n-13)*(7*n-12)*(7*n-11)*(7*n-10)*(7*n-9)*(7*n-8)*(4096*n^6 - 66048*n^5 + 446400*n^4 - 1620808*n^3 + 3339890*n^2 - 3711613*n + 1743218)*a(n) = 128*(536870912*n^13 - 14831058944*n^12 + 188986949632*n^11 - 1471608258560*n^10 + 7817645654016*n^9 - 29941451735040*n^8 + 85134250240000*n^7 - 182149348773632*n^6 + 293626158621632*n^5 - 352753169299376*n^4 + 307548490429492*n^3 - 184675145918224*n^2 + 68635535585133*n - 11961900200250)*a(n-1) + 16777216*(4096*n^6 - 41472*n^5 + 177600*n^4 - 413768*n^3 + 556826*n^2 - 414321*n + 135135)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 8^(8*(n-1)-1/2) / 7^(7*(n-1)-1/2) * n^(n-2) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

A251668 E.g.f.: exp(8*x*G(x)^7) / G(x) where G(x) = 1 + x*G(x)^8 is the g.f. of A007556.

Original entry on oeis.org

1, 7, 146, 5570, 316376, 24070168, 2303562256, 266121810928, 36054510934400, 5607388438811648, 984840629002206464, 192818670654633123328, 41644201910970978233344, 9836055425319263031070720, 2522269785922810486307846144, 697878768774876825573221076992, 207239855326220163290204654895104
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + 7*x + 146*x^2/2! + 5570*x^3/3! + 316376*x^4/4! + 24070168*x^5/5! +...
such that A(x) = exp(8*x*G(x)^7) / G(x)
where G(x) = 1 + x*G(x)^8 is the g.f. of A007556:
G(x) = 1 + x + 8*x^2 + 92*x^3 + 1240*x^4 + 18278*x^5 + 285384*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[8^k * n!/k! * Binomial[8*n-k-2,n-k] * (7*k-1)/(7*n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n)=local(G=1); for(i=0, n, G=1+x*G^8 +x*O(x^n)); n!*polcoeff(exp(8*x*G^7)/G, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, 8^k * n!/k! * binomial(8*n-k-2,n-k) * (7*k-1)/(7*n-1) )}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^8 be the g.f. of A007556, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^7 + 6*G'(x)/G(x).
(2) A(x) = F(x/A(x)^7) where F(x) is the e.g.f. of A251698.
(3) A(x) = Sum_{n>=0} A251698(n)*(x/A(x)^7)^n/n! where A251698(n) = (6*n+1) * (7*n+1)^(n-2) * 8^n.
(4) [x^n/n!] A(x)^(7*n+1) = (6*n+1) * (7*n+1)^(n-1) * 8^n.
a(n) = Sum_{k=0..n} 8^k * n!/k! * binomial(8*n-k-2,n-k) * (7*k-1)/(7*n-1) for n>=0.
Recurrence: 7*(7*n-6)*(7*n-5)*(7*n-4)*(7*n-3)*(7*n-2)*(7*n-1)*(786432*n^7 - 9420800*n^6 + 48617472*n^5 - 140311296*n^4 + 244933664*n^3 - 258931936*n^2 + 153488834*n - 39162055)*a(n) = 128*(103079215104*n^14 - 1698659565568*n^13 + 12890002161664*n^12 - 59777925251072*n^11 + 189611502469120*n^10 - 436161486520320*n^9 + 752457969500160*n^8 - 992208595165184*n^7 + 1008016614120448*n^6 - 786554741352448*n^5 + 462978217009024*n^4 - 196807984954976*n^3 + 54746044352828*n^2 - 7603476442560*n - 3022294275)*a(n-1) + 16777216*(786432*n^7 - 3915776*n^6 + 8607744*n^5 - 11010816*n^4 + 8972320*n^3 - 4620928*n^2 + 1248354*n + 315)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 6 * 8^(8*n-3/2) / 7^(7*n-1/2) * n^(n-1) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

A023001 a(n) = (8^n - 1)/7.

Original entry on oeis.org

0, 1, 9, 73, 585, 4681, 37449, 299593, 2396745, 19173961, 153391689, 1227133513, 9817068105, 78536544841, 628292358729, 5026338869833, 40210710958665, 321685687669321, 2573485501354569, 20587884010836553, 164703072086692425
Offset: 0

Views

Author

Keywords

Comments

Gives the (zero-based) positions of odd terms in A007556 (numbers n such that A007556(a(n)) mod 2 = 1). - Farideh Firoozbakht, Jun 13 2003
{1, 9, 73, 585, 4681, ...} is the binomial transform of A003950. - Philippe Deléham, Jul 22 2005
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=8, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n) = det(A). - Milan Janjic, Feb 21 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=9, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n-1) = (-1)^n*charpoly(A,1). - Milan Janjic, Feb 21 2010
This is the sequence A(0,1;7,8;2) = A(0,1;8,0;1) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
a(n) is the total number of squares the carpetmaker has removed after the n-th step of a Sierpiński carpet production. - Ivan N. Ianakiev, Oct 22 2013
For n >= 1, a(n) is the total number of holes in a box fractal (start with 8 boxes, 1 hole) after n iterations. See illustration in link. - Kival Ngaokrajang, Jan 27 2015
From Bernard Schott, May 01 2017: (Start)
Except for 0, 1 and 73, all the terms are composite because a(n) = ((2^n - 1) * (4^n + 2^n + 1))/7.
For n >= 3, all terms are Brazilian repunits numbers in base 8, and so belong to A125134.
a(3) = 73 is the only Brazilian prime in base 8, and so it belongs to A085104 and A285017. (End)

Examples

			From _Zerinvary Lajos_, Jan 14 2007: (Start)
Octal.............decimal
0....................0
1....................1
11...................9
111.................73
1111...............585
11111.............4681
111111...........37449
1111111.........299593
11111111.......2396745
111111111.....19173961
1111111111...153391689
etc. ...............etc. (End)
a(4) = (8^4 - 1)/7 = 585 = 1111_8 = (2^4 - 1) * (4^4 + 2^4 + 1)/7 = 15 * 273/7 = 15 * 39. - _Bernard Schott_, May 01 2017
		

Crossrefs

Programs

Formula

Also sum of cubes of divisors of 2^(n-1): a(n) = A001158(A000079(n-1)). - Labos Elemer, Apr 10 2003 and Farideh Firoozbakht, Jun 13 2003
a(n) = A033138(3n-2). - Alexandre Wajnberg, May 31 2005
From Philippe Deléham, Oct 12 2006: (Start)
a(0) = 0, a(n) = 8*a(n-1) + 1 for n>0.
G.f.: x/((1-8x)*(1-x)). (End)
From Wolfdieter Lang, Oct 18 2010: (Start)
a(n) = 7*a(n-1) + 8*a(n-2) + 2, a(0)=0, a(1)=1.
a(n) = 8*a(n-1) + a(n-2) - 8*a(n-3) = 9*a(n-1) - 8*a(n-2), a(0)=0, a(1)=1, a(2)=9. Observation by Gary Detlefs. See the W. Lang comment and link. (End)
a(n) = Sum_{k=0..n-1} 8^k. - Doug Bell, May 26 2017
E.g.f.: exp(x)*(exp(7*x) - 1)/7. - Stefano Spezia, Mar 11 2023

A130564 Member k=5 of a family of generalized Catalan numbers.

Original entry on oeis.org

1, 5, 40, 385, 4095, 46376, 548340, 6690585, 83615350, 1064887395, 13770292256, 180320238280, 2386316821325, 31864803599700, 428798445360120, 5809228810425801, 79168272296871450, 1084567603590147950
Offset: 1

Views

Author

Wolfdieter Lang, Jul 13 2007

Keywords

Comments

The generalized Catalan numbers C(k,n):= binomial(k*n+1,n)/(k*n+1) become for negative k=-|k|, with |k|>=2, ((-1)^(n-1))*binomial((|k|+1)*n-2,n)/(|k|*n-1), n>=0.
The family c(k,n):=binomial((k+1)*n-2,n)/(k*n-1), n>=1, has the members A000108, A006013, A006632, A118971 for k=1,2,3,4, respectively (but the offset there is 0).
The members of the C(k,n) family for positive k are: A000012 (powers of 1), A000108, A001764, A002293, A002294, A002295, A002296, A007556, A062994, for k=1..9.

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1994, pp. 200, 363.

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[InverseSeries[Series[y (1 - y)^5, {y, 0, 18}], x], x] (* Michael De Vlieger, Oct 13 2019 *)

Formula

a(n) = binomial((k+1)*n-2,n)/(k*n-1), with k=5.
G.f.: inverse series of y*(1-y)^5.
a(n) = (5/6)*binomial(6*n,n)/(6*n-1). [Bruno Berselli, Jan 17 2014]
From Wolfdieter Lang, Feb 06 2020: (Start)
G.f.: (5/6)*(1 - hypergeom([-1, 1, 2, 3, 4]/6, [1, 2, 3, 4]/5,(6^6/5^5)*x)).
E.g.f.: (5/6)*(1 - hypergeom([-1, 1, 2, 3, 4]/6, [1, 2, 3, 4, 5]/5,(6^6/5^5)*x)). (End)
D-finite with recurrence 5*n*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n) -72*(6*n-7)*(3*n-1)*(2*n-1)*(3*n-2)*(6*n-5)*a(n-1)=0. - R. J. Mathar, May 07 2021

A059968 Number of 10-ary trees.

Original entry on oeis.org

1, 1, 10, 145, 2470, 46060, 910252, 18730855, 397089550, 8612835715, 190223180840, 4263421511271, 96723482198980, 2216905597676000, 51256802757808320, 1194060413809070710, 27999654303202465310, 660370070571422998410, 15654733143626084944150
Offset: 0

Views

Author

Claude Lenormand (claude.lenormand(AT)free.fr), Mar 05 2001

Keywords

Comments

From Wolfdieter Lang, Feb 06 2020: (Start)
Ninth column of triangle A062993 (without leading zeros). A Pfaff-Fuss or 10-Raney sequence.
a(n), n>=1, enumerates 10-ary trees (rooted, ordered, incomplete) with n vertices (including the root).
See Graham et al., Hilton and Pedersen, Hoggat and Bicknell, Frey and Sellers references given in A062993. (End)
This is instance k = 10 of the generalized Catalan family {C(k, n)}A130564%20-%20_Wolfdieter%20Lang">{n>=0} given in a comment of A130564 - _Wolfdieter Lang, Feb 05 2024

Examples

			There are a(2)=10 10-ary trees (vertex degree <=10 and 10 possible branchings) with 2 vertices (one of them the root). Adding one more branch (one more vertex) to these 10 trees yields 10*10+binomial(10,2)=145=a(3) such trees. - _Wolfdieter Lang_, Sep 14 2007.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, Heidelberg, New York, 2 vols., 1972, Vol. 1, problem 211, p. 146 with solution on p. 348.

Crossrefs

Related algebraic sequences concerning trees: strictly k-ary trees (A000108: s=x+s^2, A001263: s=(x, y)+(x, s)+(s, y)+(s, s))), (A001764: s=x+s^3), (A002293: s=x+s^4), (A002294: s=x+s^5), (A002295: s=x+s^6), (A002296: s=x+s^7), (A007556: s=x+s^8), at most k-ary trees (A001006: s=x+xs+xs^2), (A036765-A036769, s=x+xs^2....+xs^k, k=3, 4, 5, 6, 7).
Cf. A130564.

Programs

  • Maple
    seq(binomial(10*k+1, k)/(9*k+1), k=0..30);
    n:=30:G:=series(RootOf(g = 1+x*g^10, g), x=0, n+1):seq(coeff(G, x, k), k=0..n); # Robert FERREOL, Apr 01 2015
  • Mathematica
    a[n_] := Binomial[10n, n]/(9n+1);
    a /@ Range[0, 25] (* Jean-François Alcover, Jan 17 2020 *)

Formula

G.f. A(x) satisfies: A = x + A^10.
a(n) = binomial(k*n, n)/((k-1)*n+1), for k=10.
Recurrence: a(0) = 1; a(n) = Sum_{i1+i2+..i10=n-1} a(i1)*a(i2)*...*a(i10) for n>=1. - Robert FERREOL, Apr 01 2015
From Wolfdieter Lang, Feb 06 2020: (Start)
a(n) = A062993(n+8, 8). [Corrected by Robert FERREOL, Apr 01 2015]
G.f.: RootOf((_Z^10)*x-_Z+1) (Maple notation, from ECS, see links for A007556).
G.f.: hypergeometric([1, 2, 3, 4, 5, 6, 7, 8, 9]/10, [2, 3, 4, 5, 6, 7, 8, 10]/9, (10^10/9^9)*x),
E.g.f.: hypergeometric([1, 2, 3, 4, 5, 6, 7, 8, 9]/10, [2, 3, 4, 5, 6, 7, 8, 9, 10]/9, (10^10/9^9)*x).
For other family members see the crossreferences.
(End)
D-finite with recurrence 81*n*(9*n-7)*(9*n-5)*(3*n-1)*(9*n-1)*(9*n+1)*(3*n-2)*(9*n-4)*(9*n-2)*a(n) -800*(10*n-9)*(5*n-4)*(10*n-7)*(5*n-3)*(2*n-1)*(5*n-2)*(10*n-3)*(5*n-1)*(10*n-1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022
a(n) ~ (10^10/9^9)^n*sqrt(10/(2*Pi*(9*n)^3)). - Robert A. Russell, Jul 15 2024
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^19). - Seiichi Manyama, Jun 16 2025

Extensions

More terms from James Sellers, Mar 15 2001
a(0)=1 inserted by Alois P. Heinz, Jan 17 2020
A062744 merged into this sequence by Wolfdieter Lang, Feb 06 2020

A062994 Eighth column of triangle A062993 (without leading zeros). A Pfaff-Fuss or 9-Raney sequence.

Original entry on oeis.org

1, 1, 9, 117, 1785, 29799, 527085, 9706503, 184138713, 3573805950, 70625252863, 1416298046436, 28748759731965, 589546754316126, 12195537924351375, 254184908607118800, 5332692942907262361
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

See Graham et al., Hilton and Pedersen, Hoggat and Bicknell, Frey and Sellers references given in A062993.
Essentially the same as A059967. a(n), n>=1, enumerates 9-ary trees (rooted, ordered, incomplete) with n vertices (including the root).
These numbers appear in a formula on p. 24 of Gross et al. for b = -2 or 4. For b = -1 or 3, see A002293.- Tom Copeland, Dec 24 2019
This is instance k = 9 of the generalized Catalan family {C(k, n)}_{n>=0} given in a comment of A130564. - Wolfdieter Lang, Feb 05 2024

Examples

			There are a(2)=9 9-ary trees (vertex degree <=9 and 9 possible branchings) with 2 vertices (one of them the root). Adding one more branch (one more vertex) to these 9 trees yields 9*9 + binomial(9,2) = 117 = a(3) such trees.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, Heidelberg, New York, 2 vols., 1972, Vol. 1, problem. 211, p. 146 with solution on p. 348.

Crossrefs

Programs

  • Maple
    seq(binomial(9*k+1,k)/(8*k+1),k=0..30);
    n:=30: G:=series(RootOf(g = 1+x*g^9, g),x=0,n+1): seq(coeff(G,x,k),k=0..n); # Robert FERREOL, Apr 01 2015
  • Mathematica
    Table[Binomial[9n,n]/(8n+1),{n,0,30}] (* Harvey P. Dale, Oct 28 2012 *)
  • PARI
    { for (n=0, 100, write("b062994.txt", n, " ", binomial(9*n, n)/(8*n + 1)) ) } \\ Harry J. Smith, Aug 15 2009

Formula

a(n) = A062993(n+7, 7) = binomial(9*n, n)/(8*n+1).
G.f.: RootOf((_Z^9)*x-_Z+1) (Maple notation, from ECS, see links for A007556).
Recurrence: a(0) = 1; a(n) = Sum_{i1+i2+..+i9=n-1} a(i1)*a(i2)*...*a(i9) for n>=1. - Robert FERREOL, Apr 01 2015
From Ilya Gutkovskiy, Jan 16 2017: (Start)
O.g.f.: 8F7(1/9,2/9,1/3,4/9,5/9,2/3,7/9,8/9; 1/4,3/8,1/2,5/8,3/4,7/8,9/8; 387420489*x/16777216).
E.g.f.: 8F8(1/9,2/9,1/3,4/9,5/9,2/3,7/9,8/9; 1/4,3/8,1/2,5/8,3/4,7/8,1,9/8; 387420489*x/16777216).
a(n) ~ 3^(18*n+1)/(sqrt(Pi)*2^(24*n+5)*n^(3/2)). (End)
D-finite with recurrence: 128*n*(8*n-5)*(4*n-1)*(8*n+1)*(2*n-1)*(8*n-1)*(4*n-3)*(8*n-3)*a(n) -81*(9*n-7)*(9*n-5)*(3*n-1)*(9*n-1)*(9*n-8)*(3*n-2)*(9*n-4)*(9*n-2)*a(n-1)=0. - R. J. Mathar, Feb 20 2020
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^17). - Seiichi Manyama, Jun 16 2025

Extensions

9-ary tree comments and Pólya and G. Szegő reference from Wolfdieter Lang, Sep 14 2007

A251592 Triangle of coefficients of polynomials P(n,t) related to the Mittag-Leffler function, where P(n,t) = Product_{k=0..n-2} n*t-k.

Original entry on oeis.org

1, 0, 2, 0, -3, 9, 0, 8, -48, 64, 0, -30, 275, -750, 625, 0, 144, -1800, 7560, -12960, 7776, 0, -840, 13426, -77175, 204085, -252105, 117649, 0, 5760, -112896, 831488, -3010560, 5734400, -5505024, 2097152, 0, -45360, 1058508, -9573228
Offset: 1

Views

Author

Jean-François Alcover, Dec 05 2014

Keywords

Comments

Second column (unsigned) 2, 3, 8, 30, 144, ... is A001048.
Diagonal 1, 2, 9, 64, 625, 7776, ... is A000169.

Examples

			Triangle begins :
  1;
  0,   2;
  0,  -3,     9;
  0,   8,   -48,   64;
  0, -30,   275, -750,    625;
  0, 144, -1800, 7560, -12960, 7776;
  ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998

Crossrefs

Cf. A000169, A001048, A156136, A000108 (B_2(x)), A001764 (B_3(x)), A002293 (B_4(x)), A002294 (B_5(x)), A002295 (B_6(x)), A002296 (B_7(x)), A007556 (B_8(x)), A062994 (B_9(x)), A059968 (B_10(x)), A230388 (B_11(x)), A139526, A260687.

Programs

  • Mathematica
    P[n_, t_] := Product[n*t - k, {k, 0, n-2}]; row[n_] := CoefficientList[P[n, t], t]; Table[row[n], {n, 1, 10}] // Flatten

Formula

P(n,t) = (n-1)!*binomial(n*t, n-1).
From Peter Bala, Nov 15 2015: (Start)
E.g.f. (with constant term 1): B_t(x) = Sum_{n >= 0} 1/(n*t + 1)*binomial(n*t + 1,n)*x^n = 1 + x + 2*t*x^2/2! + 3*t(3*t - 1)*x^3/3! + 4*t*(4*t - 1)*(4*t - 2)*x^4/4! + ... is the generalized binomial series of Lambert. See Graham et al., Section 5.4 and Section 7.5.
In the notation of the Bala link, B_t(x) = I^t(1 + x) where I^t is a fractional inversion operator. B_(1+t)(x) is the e.g.f. for A260687.
B_t(x) = 1 + x*B_t(x)^t.
For complex r, B_t(x)^r = Sum_{n >= 0} r/(n*t + r)*binomial(n*t + r,n)*x^n.
log (B_t(x)) = Sum_{n >= 1} 1/(n*t)*binomial(n*t,n)*x^n.
B_2(x) is the o.g.f. for the Catalan numbers A000108. B_t(x) for t = 3,4,5,... gives the o.g.f. for various Fuss-Catalan sequences. See the cross references. (End)

A070914 Array read by antidiagonals giving number of paths up and left from (0,0) to (n,kn) where x/y <= k for all intermediate points.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 14, 1, 1, 1, 5, 22, 55, 42, 1, 1, 1, 6, 35, 140, 273, 132, 1, 1, 1, 7, 51, 285, 969, 1428, 429, 1, 1, 1, 8, 70, 506, 2530, 7084, 7752, 1430, 1, 1, 1, 9, 92, 819, 5481, 23751, 53820, 43263, 4862, 1, 1, 1, 10, 117, 1240
Offset: 0

Views

Author

Henry Bottomley, May 20 2002

Keywords

Comments

Also related to dissections of polygons and enumeration of trees.
Number of dissections of a polygon into n (k+2)-gons by nonintersecting diagonals. All dissections are counted separately. See A295260 for nonequivalent solutions up to rotation and reflection. - Andrew Howroyd, Nov 20 2017
Number of rooted polyominoes composed of n (k+2)-gonal cells of the hyperbolic (Euclidean for k=0) regular tiling with Schläfli symbol {k+2,oo}. A rooted polyomino has one external edge identified, and chiral pairs are counted as two. For k>0, a stereographic projection of the {k+2,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 27 2024

Examples

			Rows start:
===========================================================
n\k| 0     1      2       3        4        5         6
---|-------------------------------------------------------
0  | 1,    1,     1,      1,       1,       1,        1 ...
1  | 1,    1,     1,      1,       1,       1,        1 ...
2  | 1,    2,     3,      4,       5,       6,        7 ...
3  | 1,    5,    12,     22,      35,      51,       70 ...
4  | 1,   14,    55,    140,     285,     506,      819 ...
5  | 1,   42,   273,    969,    2530,    5481,    10472 ...
6  | 1,  132,  1428,   7084,   23751,   62832,   141778 ...
7  | 1,  429,  7752,  53820,  231880,  749398,  1997688 ...
8  | 1, 1430, 43263, 420732, 2330445, 9203634, 28989675 ...
...
		

Crossrefs

Rows include A000012 (twice), A000027, A000326.
Reflected version of A062993 (which is the main entry).
Cf. A295260.
Polyominoes: A295224 (oriented), A295260 (unoriented).

Programs

  • Maple
    A:= (n, k)-> binomial((k+1)*n, n)/(k*n+1):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Mar 25 2015
  • Mathematica
    T[n_, k_] = Binomial[n(k+1), n]/(k*n+1); Flatten[Table[T[n-k, k], {n, 0, 9}, {k, n, 0, -1}]] (* Jean-François Alcover, Apr 08 2016 *)
  • PARI
    T(n, k) = binomial(n*(k+1), n)/(n*k+1); \\ Andrew Howroyd, Nov 20 2017

Formula

T(n, k) = binomial(n*(k+1), n)/(n*k+1) = A071201(n, k*n) = A071201(n, k*n+1) = A071202(n, k*n+1) = A062993(n+k-1, k-1).
If P(k,x) = Sum_{n>=0} T(n,k)*x^n is the g.f. of column k (k>=0), then P(k,x) = exp(1/(k+1)*(Sum_{j>0} (1/j)*binomial((k+1)*j,j)*x^j)). - Werner Schulte, Oct 13 2015

A062993 A triangle (lower triangular matrix) composed of Pfaff-Fuss (or Raney) sequences.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 14, 12, 4, 1, 1, 42, 55, 22, 5, 1, 1, 132, 273, 140, 35, 6, 1, 1, 429, 1428, 969, 285, 51, 7, 1, 1, 1430, 7752, 7084, 2530, 506, 70, 8, 1, 1, 4862, 43263, 53820, 23751, 5481, 819, 92, 9
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

The column sequences (without leading zeros) appear in eq.(7.66), p. 347 of the Graham et al. reference, in Th. 0.3, p. 66, of Hilton and Pedersen reference, as first columns of the S-triangles in the Hoggatt and Bicknell reference and in eq. 5 of the Frey and Sellers reference. They are also called m-Raney (here m=k+2) or Fuss-Catalan sequences (see Graham et al. for reference). For the history and the name Pfaff-Fuss see Brown reference, p. 975. PF(n,m) := binomial(m*n+1,n)/(m*n+1), m >= 2.
Also called generalized Catalan numbers.

Examples

			The triangle a(n, k) begins:
n\k     0      1      2      3     4     5    6   7  8  9 10 ...
0:      1
1:      1      1
2:      2      1      1
3:      5      3      1      1
4:     14     12      4      1     1
5:     42     55     22      5     1     1
6:    132    273    140     35     6     1    1
7:    429   1428    969    285    51     7    1   1
8:   1430   7752   7084   2530   506    70    8   1  1
9:   4862  43263  53820  23751  5481   819   92   9  1  1
10: 16796 246675 420732 231880 62832 10472 1240 117 10  1  1
... Reformatted by _Wolfdieter Lang_, Feb 06 2020
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994.

Crossrefs

Reflected version of A070914.
Columns k=0..9 (without leading zeros) give sequences A000108 (Catalan), A001764, A002293, A002294, A002295, A002296, A007556, A062994, A059968, A230388.

Programs

  • Mathematica
    a[n_, k_] = Binomial[(k+2)*(n-k), n-k]/((k+1)*(n-k) + 1);
    Flatten[Table[a[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 53]]
    (* Jean-François Alcover, May 27 2011, after formula *)

Formula

a(n, k) = binomial((k+2)*(n-k), n-k)/((k+1)*(n-k)+1) = PF(n-k, k+2) if n-k >= 0, otherwise 0.
G.f. for column k: A(k, x) := x^k*RootOf(_Z^(k+2)*x-_Z+1) (Maple notation, from ECS, see links for column sequences and Graham et al. reference eq.(5.59) p. 200 and p. 349).

A234465 a(n) = 3*binomial(8*n+6,n)/(4*n+3).

Original entry on oeis.org

1, 6, 63, 812, 11655, 178794, 2869685, 47593176, 809172936, 14028048650, 247039158366, 4406956913268, 79470057050020, 1446283758823470, 26529603944225670, 489989612605050800, 9104498753815680600, 170073237411754811568, 3192081704235788729043
Offset: 0

Views

Author

Tim Fulford, Dec 26 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p = 8, r = 6.

Crossrefs

Programs

  • Magma
    [3*Binomial(8*n+6, n)/(4*n+3): n in [0..30]]; // Vincenzo Librandi, Dec 26 2013
  • Mathematica
    Table[3 Binomial[8 n + 6, n]/(4 n + 3), {n, 0, 40}] (* Vincenzo Librandi, Dec 26 2013 *)
  • PARI
    a(n) = 3*binomial(8*n+6,n)/(4*n+3);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(4/3))^6+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p = 8, r = 6.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^6), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/6) is the o.g.f. for A007556. - Peter Bala, Oct 14 2015
D-finite with recurrence: 7*n*(7*n+4)*(7*n+1)*(7*n+5)*(7*n+2)*(7*n+6)*(7*n+3)*a(n) -128*(8*n+3)*(4*n-1)*(8*n+1)*(2*n+1)*(8*n-1)*(4*n+1)*(8*n+5)*a(n-1)=0. - R. J. Mathar, Feb 21 2020
Showing 1-10 of 42 results. Next