A007584 9-gonal (or enneagonal) pyramidal numbers: a(n) = n*(n+1)*(7*n-4)/6.
0, 1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, 1606, 2080, 2639, 3290, 4040, 4896, 5865, 6954, 8170, 9520, 11011, 12650, 14444, 16400, 18525, 20826, 23310, 25984, 28855, 31930, 35216, 38720, 42449, 46410, 50610, 55056, 59755, 64714, 69940, 75440, 81221
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
Programs
-
Magma
I:=[0, 1, 10, 34, 80]; [n le 5 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 10 2013
-
Maple
a:=n->sum((n+j)^2-(n+j), j=0..n): seq(a(n)/2, n=0..30); # Zerinvary Lajos, May 26 2008
-
Mathematica
Table[n*(n+1)(7n-4)/6, {n, 0,100}] (* Vladimir Joseph Stephan Orlovsky, Jun 25 2009 *) LinearRecurrence[{4,-6,4,-1},{1,10,34,80},30] (* Ant King, Oct 27 2012 *) CoefficientList[Series[x (1 + 6 x) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 10 2013 *)
-
Maxima
A007584[n]:=n*(n+1)*(7*n-4)/6$ makelist(A007584[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
-
PARI
a(n) = n*(n+1)*(7*n-4)/6; \\ Michel Marcus, Mar 04 2014
Formula
a(n) = (7*n-4)*binomial(n+1, 2)/3.
G.f.: x*(1+6*x)/(1-x)^4.
From Ant King, Oct 27 2012: (Start)
a(n) = a(n-1) + n*(7*n-5)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 7.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = (n+1)*(2*A001106(n)+n)/6.
a(n) = binomial(n+2,3) + 6*binomial(n+1,3). (End)
a(n) = Sum_{i = 0..n-1} (n-i)*(7*i+1) for n>0. - Bruno Berselli, Feb 10 2014
a(n) = A080851(7,n-1). - R. J. Mathar, Jul 28 2016
E.g.f.: (x/6)*(6 + 24*x + 7*x^2)*exp(x). - G. C. Greubel, Oct 29 2017
Comments