cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007585 10-gonal (or decagonal) pyramidal numbers: a(n) = n*(n + 1)*(8*n - 5)/6.

Original entry on oeis.org

0, 1, 11, 38, 90, 175, 301, 476, 708, 1005, 1375, 1826, 2366, 3003, 3745, 4600, 5576, 6681, 7923, 9310, 10850, 12551, 14421, 16468, 18700, 21125, 23751, 26586, 29638, 32915, 36425, 40176, 44176, 48433, 52955, 57750
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of [1, 10, 17, 8, 0, 0, 0, ...] = (1, 11, 38, 90, ...). - Gary W. Adamson, Mar 18 2009
This sequence is related to A000384 by a(n) = n*A000384(n) - Sum_{i=0..n-1} A000384(i) and this is the case d=4 in the identity n*(n*(d*n-d+2)/2) - Sum_{k=0..n-1} k*(d*k-d+2)/2 = n*(n+1)*(2*d*n - 2*d + 3)/6. - Bruno Berselli, Apr 21 2010
For n>0, (a(n)) is the principal diagonal of the convolution array A213750. - Clark Kimberling, Jun 20 2012
From Ant King, Oct 30 2012: (Start)
The partial sums of the figurate decagonal numbers A001107.
For n>1, the digital roots of this sequence A010888(A007585(n)) form the purely periodic 27-cycle {1,2,2,9,4,4,8,6,6,7,8,8,6,1,1,5,3,3,4,5,5,3,7,7,2,9,9}.
For n>1, the units’ digits of this sequence A010879(A007585(n)) form the purely periodic 20-cycle {1,1,8,0,5,1,6,8,5,5,6,6,3,5,0,6,1,3,0,0}.
(End)

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000384.
Cf. A093565 ((8, 1) Pascal, column m=3). Partial sums of A001107.
Cf. similar sequences listed in A237616.

Programs

Formula

a(n) = (8*n-5)*binomial(n+1, 2)/3.
G.f.: x*(1+7*x)/(1-x)^4.
a(n) = (8*n^3 + 3*n^2 - 5*n)/6. - Vincenzo Librandi, Aug 01 2010
a(0)=0, a(1)=1, a(2)=11, a(3)=38, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Dec 20 2011
From Ant King, Oct 30 2012: (Start)
a(n) = a(n-1) + n*(4*n-3).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 8.
a(n) = (n+1)*(2*A001107(n) + n)/6.
a(n) = A000292(n) + 7*A000292(n-1).
a(n) = A007584(n) + A000292(n-1).
a(n) = A000217(n) + 8*A000292(n-1).
a(n) = binomial(n+2,3) + 7*binomial(n+1,3).
Sum_{n>=1} 1/a(n) = 6*(4*pi*(sqrt(2)-1) + 4*(8-sqrt(2))*log(2) + 8*sqrt(2)*log(2-sqrt(2))-5)/65 = 1.145932345...
(End)
a(n) = Sum_{i=0..n-1} (n-i)*(8*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: x*(6 + 27*x + 8*x^2)*exp(x)/6. - Ilya Gutkovskiy, May 12 2017