A007778 a(n) = n^(n+1).
0, 1, 8, 81, 1024, 15625, 279936, 5764801, 134217728, 3486784401, 100000000000, 3138428376721, 106993205379072, 3937376385699289, 155568095557812224, 6568408355712890625, 295147905179352825856, 14063084452067724991009, 708235345355337676357632
Offset: 0
References
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 67.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Nick Hobson, Exponential equation.
- Yidong Sun and Jujuan Zhuang, lambda-factorials of n, arXiv:1007.1339 [math.CO], 2010. - _Peter Luschny_, Jul 09 2010
Crossrefs
Programs
-
Magma
[n^(n+1):n in [0..20]]; // Vincenzo Librandi, Jan 03 2012
-
Maple
seq( n^(n+1), n=0..20); # G. C. Greubel, Mar 05 2020
-
Mathematica
Table[n^(n+1), {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Oct 01 2008 *)
-
Maxima
A007778[n]:=n^(n+1)$ makelist(A007778[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
-
PARI
vector(21, n, my(m=n-1); m^(m+1)) \\ G. C. Greubel, Mar 05 2020
-
Sage
[n^(n+1) for n in (0..20)] # G. C. Greubel, Mar 05 2020
Formula
E.g.f.: -W(-x)/(1 + W(-x))^3, W(x) Lambert's function (principal branch).
a(n) = Sum_{k=0..n} binomial(n,k)*A000166(k+1)*(n+1)^(n-k). - Peter Luschny, Jul 09 2010
E.g.f.: d/dx {x/(T(x)*(1-T(x)))}, where T(x) = Sum_{n >= 1} n^(n-1)*x^n/n! is the tree function of A000169. - Peter Bala, Aug 05 2012
a(n) = n*A000312(n). - R. J. Mathar, Jan 12 2017
Sum_{n>=2} 1/a(n) = A135608. - Amiram Eldar, Nov 17 2020
Comments