A007840 Number of factorizations of permutations of n letters into ordered cycles.
1, 1, 3, 14, 88, 694, 6578, 72792, 920904, 13109088, 207360912, 3608233056, 68495486640, 1408631978064, 31197601660080, 740303842925184, 18738231641600256, 503937595069600896, 14349899305396086912, 431322634732516137216, 13646841876634025159424
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..420
- K. Anders and K. Archer, Rooted forests that avoid sets of permutations, arXiv:1607.03046 [math.CO], 2016-2017.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 119.
- W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 March 2013, Digital Object Identifier: 10.1109/SSST.2013.6524939.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 122
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
- A. Knopfmacher and J. N. Ridley, Reciprocal sums over partitions and compositions, SIAM J. Discrete Math. 6 (1993), no. 3, 388-399.
- Chanchal Kumar and Amit Roy, Integer Sequences and Monomial Ideals, arXiv:2003.10098 [math.CO], 2020.
Programs
-
Maple
a:= proc(n) a(n):= n!*`if`(n=0, 1, add(a(k)/(k!*(n-k)), k=0..n-1)) end: seq(a(n), n=0..25); # Alois P. Heinz, Nov 06 2012
-
Mathematica
Table[Sum[Abs[StirlingS1[n, k]] k!, {k, 0, n}], {n, 0, 20}] (* Geoffrey Critzer, Mar 18 2009 *)
-
PARI
a(n)=n!*polcoeff(1/(1+log(1-x +x*O(x^n))),n) /* Paul D. Hanna, Jul 19 2006 */
-
PARI
{a(n)=local(CF=1+x*O(x)); for(k=0, n-1, CF=1/((n-k)-((n-k+1)\2)^2*x*CF)); n!*polcoeff(1/(1-x*CF), n)} /* Paul D. Hanna, Jul 19 2006 */
-
Sage
def A007840_list(len): f, R, C = 1, [1], [1]+[0]*len for n in (1..len): f *= n for k in range(n, 0, -1): C[k] = -C[k-1]*((k-1)/k if k>1 else 1) C[0] = sum((-1)^k*C[k] for k in (1..n)) R.append(C[0]*f) return R print(A007840_list(20)) # Peter Luschny, Feb 21 2016
Formula
a(n) = Sum_{k=1..n} k! * s(n, k), s(n, k) = unsigned Stirling number of first kind; E.g.f. 1/(1+log(1-z)).
For n>0, a(n) is the permanent of the n X n matrix with entries a(i, i) = i and a(i, j) = 1 elsewhere. - Philippe Deléham, Dec 09 2003
a(n) = A052860(n)/n for n >= 1.
a(n) = n!*Sum_{k=0..n-1} a(k)/k!/(n-k) for n >= 1 with a(0)=1. - Paul D. Hanna, Jul 19 2006
E.g.f.: B(A(x)) where B(x) = 1/(1-x) and A(x) = log(1/(1-x)). - Geoffrey Critzer, Mar 18 2009
a(n) = D^n(1/(1-x)) evaluated at x = 0, where D is the operator exp(x)*d/dx. Cf. A006252. - Peter Bala, Nov 25 2011
E.g.f.: 1/(1+log(1-x)) = 1/(1 - x/(1 - x/(2 - x/(3 - 4*x/(4 - 4*x/(5 - 9*x/(6 - 9*x/(7 - 16*x/(8 - 16*x/(9 - ...)))))))))), a continued fraction. - Paul D. Hanna, Dec 31 2011
a(n) ~ n! * exp(n)/(exp(1)-1)^(n+1). - Vaclav Kotesovec, Jun 21 2013
Extensions
Extended June 1995
Comments