cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A004090 Sum of digits of Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 4, 3, 7, 10, 17, 9, 8, 17, 7, 24, 22, 19, 14, 24, 20, 17, 28, 27, 19, 19, 29, 21, 23, 17, 31, 30, 34, 37, 35, 27, 35, 44, 43, 24, 31, 46, 41, 33, 29, 35, 37, 54, 55, 46, 29, 48, 41, 53, 58, 48, 52, 73, 44, 54, 53, 62, 61, 51, 67, 73, 59
Offset: 0

Views

Author

Keywords

Comments

a(n) and Fibonacci(n) are congruent modulo 9 which implies that (a(n) mod 9) is equal to (Fibonacci(n) mod 9) A007887(n). Thus (a(n) mod 9) is periodic with Pisano period A001175(9) = 24. - Hieronymus Fischer, Jun 25 2007
It appears that a(n) - n stays negative for n > 5832, which explains why A020995 is finite. - T. D. Noe, Mar 19 2012

Crossrefs

Cf. A000045 (Fibonacci), A007953 (digit sum), A030132 (digital root of A45), A010888 (digital root), A246558, A261587, A068500.

Programs

Formula

a(n) = Fibonacci(n) - 9*Sum_{k>0} floor(Fibonacci(n)/10^k). - Hieronymus Fischer, Jun 25 2007
a(n) = A007953(A000045(n)). - Reinhard Zumkeller, Nov 17 2014
A010888(a(n)) = A030132(n) == a(n) (mod 9). - M. F. Hasler, Jul 07 2025

A010077 a(n) = sum of digits of a(n-1) + sum of digits of a(n-2); a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 12, 7, 10, 8, 9, 17, 17, 16, 15, 13, 10, 5, 6, 11, 8, 10, 9, 10, 10, 2, 3, 5, 8, 13, 12, 7, 10, 8, 9, 17, 17, 16, 15, 13, 10, 5, 6, 11, 8, 10, 9, 10, 10, 2, 3, 5, 8, 13, 12, 7, 10, 8, 9, 17, 17, 16, 15, 13, 10, 5, 6, 11, 8, 10, 9, 10, 10
Offset: 0

Views

Author

Keywords

Comments

The digital sum analog (in base 10) of the Fibonacci recurrence. - Hieronymus Fischer, Jun 27 2007
a(n) and Fibonacci(n) = A000045(n) are congruent modulo 9 which implies that (a(n) mod 9) is equal to (Fibonacci(n) mod 9) = A007887(n). Thus (a(n) mod 9) is periodic with the Pisano period A001175(9)=24. - Hieronymus Fischer, Jun 27 2007
a(n) == A004090(n) (mod 9) (A004090(n) = digital sum of Fibonacci(n)). - Hieronymus Fischer, Jun 27 2007
For general bases p > 2, we have the inequality 2 <= a(n) <= 2p-3 (for n > 2). Actually, a(n) <= 17 = A131319(10) for the base p=10. - Hieronymus Fischer, Jun 27 2007

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Apply[ Plus, IntegerDigits[ a[n - 1] ]] + Apply[ Plus, IntegerDigits[ a[n - 2] ]]; Table[ a[n], {n, 0, 100} ]
    nxt[{a_,b_}]:={b, Total[IntegerDigits[a]]+Total[IntegerDigits[b]]}; NestList[ nxt,{0,1},80][[All,1]] (* Harvey P. Dale, Apr 15 2018 *)
  • PARI
    first(n) = {n = max(n, 2); my(res = vector(n)); res[2] = 1; for(i = 3, n, res[i] = sumdigits(res[i-1]) + sumdigits(res[i-2]) ); res } \\ David A. Corneth, May 26 2021

Formula

Periodic from n=3 with period 24. - Franklin T. Adams-Watters, Mar 13 2006
a(n) = A030132(n-4) + A030132(n-3) for n>3. - Reinhard Zumkeller, Jul 04 2007
a(n) = a(n-1) + a(n-2) - 9*(floor(a(n-1)/10) + floor(a(n-2)/10)). - Hieronymus Fischer, Jun 27 2007
a(n) = floor(a(n-1)/10) + floor(a(n-2)/10) + (a(n-1) mod 10) + (a(n-2) mod 10). - Hieronymus Fischer, Jun 27 2007
a(n) = A059995(a(n-1)) + A059995(a(n-2)) + A010879(a(n-1)) + A010879(a(n-2)). - Hieronymus Fischer, Jun 27 2007
a(n) = Fibonacci(n) - 9*Sum_{k=2..n-1} Fibonacci(n-k+1)*floor(a(k)/10) where Fibonacci(n) = A000045(n). - Hieronymus Fischer, Jun 27 2007

A137290 Fibonacci(n) mod 30.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 4, 25, 29, 24, 23, 17, 10, 27, 7, 4, 11, 15, 26, 11, 7, 18, 25, 13, 8, 21, 29, 20, 19, 9, 28, 7, 5, 12, 17, 29, 16, 15, 1, 16, 17, 3, 20, 23, 13, 6, 19, 25, 14, 9, 23, 2, 25, 27, 22, 19, 11, 0, 11, 11, 22, 3, 25, 28, 23, 21, 14, 5, 19, 24, 13, 7, 20, 27, 17, 14
Offset: 1

Views

Author

Aaron M. Churchill (churchil(AT)math.udel.edu), Mar 15 2008

Keywords

Comments

Has period 120.

Crossrefs

Programs

  • Mathematica
    Mod[Fibonacci[Range[80]],30] (* Harvey P. Dale, Sep 12 2022 *)
  • PARI
    a(n) = fibonacci(n) % 30 \\ Michel Marcus, Jun 12 2013

A160136 Lodumo_9 of Fibonacci numbers.

Original entry on oeis.org

0, 1, 10, 2, 3, 5, 8, 4, 12, 7, 19, 17, 9, 26, 35, 16, 6, 13, 28, 14, 15, 11, 44, 37, 18, 46, 55, 20, 21, 23, 53, 22, 30, 25, 64, 62, 27, 71, 80, 34, 24, 31, 73, 32, 33, 29, 89, 82, 36, 91, 100, 38, 39, 41, 98, 40, 48, 43, 109, 107, 45, 116, 125, 52, 42, 49, 118, 50, 51, 47, 134
Offset: 0

Views

Author

Philippe Deléham, May 02 2009

Keywords

Comments

Permutation of nonnegative integers.
From Michael De Vlieger, Jan 21 2021: (Start)
The plot is governed by A001175(9) = 24 and is bifurcated into two trajectories that repeat a "constellation" of points we label "red" and "blue" so as to match the linked figures. We might group the terms in a(n) into two classes as to their residue r (mod 24). The red terms have n = r (mod 24) for r in {1, 2, 6, 10, 11, 13, 14, 18, 22, 23}, while the blue terms have r in {0, 3, 4, 5, 7, 8, 9, 12, 15, 16, 17, 19, 20, 21}.
There are 10 residues in the red constellation, and 14 residues in the blue constellation.
For red, we have the displacement a(n + 24) - a(n) = 45, thus the slope m_red = 15/8. For blue, we have the displacement a(n + 24) - a(n) = 18, thus the slope m_blue = 3/4.(End)

Crossrefs

Programs

  • Mathematica
    Block[{m = 9, s = Fibonacci[Range[120]]}, Nest[Append[#1, Block[{k = 1}, While[Nand[Mod[k, m] == Mod[s[[#2]], m], FreeQ[#1, k]], k++]; k]] & @@ {#, Length@ #} &, {0}, 120]] (* Michael De Vlieger, Jan 21 2021 *)

Formula

a(n) = lod_9(A000045(n)).
a(n) = 2*a(n-24) - a(n-48) for n >= 48. - Philippe Deléham, Mar 09 2023
a(n) = a(n-12) + a(n-24) - a(n-36) for n >= 36. - Ray Chandler, Sep 10 2023

Extensions

Replaced second 18 by 118 - R. J. Mathar, May 03 2009

A281619 Integer values of (A000045^2-1)/9 where A000045(m) is the m-th Fibonacci number.

Original entry on oeis.org

0, 7, 336, 880, 6032, 15792, 741895, 34853280, 91247072, 625416736, 1637362272, 76921173511, 3613657792752, 9460678925136, 64844458022832, 169764995085840, 7975341111241735, 374671267233275712, 980902112224710592, 6723203096097857600, 17601574218852716736, 826899317018844410887
Offset: 1

Views

Author

Michel Marcus, Jan 25 2017

Keywords

Comments

Also the integer values of A080097/9 where A080097(m) = Fibonacci(n+2)^2 - 1.
The indices of the Fibonacci numbers are 1, 2, 6, 10, and 11 mod 12. See the Wulczy link.

Crossrefs

Programs

  • Maple
    seq(seq((combinat:-fibonacci(12*m+j)^2-1)/9,j=[2,6,10,11,13]),m=0..20); # Robert Israel, Mar 05 2017
  • Mathematica
    Select[(#^2-1)/9&/@Fibonacci[Range[100]],IntegerQ] (* Harvey P. Dale, Feb 07 2017 *)
  • PARI
    lista(nn)=v = [1, 2, 6, 10, 11, 13, 14, 18, 22, 23]; for (n=1, nn, j = (n % #v) +1; k = n\#v; print1((fibonacci(24*k+v[j])^2-1)/9, ", "););
    
  • PARI
    a(n)=fibonacci(n\5*12+[1, 2, 6, 10, 11][n%5+1])^2\9 \\ Charles R Greathouse IV, Jan 26 2017

Formula

G.f.: x^2*(7*x^10+336*x^9+880*x^8+6032*x^7+15792*x^6+16114*x^5+15792*x^4
+6032*x^3+880*x^2+336*x+7)/(-x^15+103683*x^10-103683*x^5+1). - Robert Israel, Mar 05 2017

A362358 Alternating sum of digits of the Fibonacci numbers, with a plus sign for the last digit.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 2, -1, 1, 0, 1, 1, 2, 3, 5, 8, 2, -1, -10, 0, 12, 1, 2, 3, 5, -3, 13, -1, 1, -11, 1, 12, 2, 3, 5, -3, 13, 10, 1, 0, 1, -10, 13, 3, -17, 19, -9, 10, 1, 0, 1, 12, 13, 3, -6, 8, 2, -1, -10, 0, 1, 12, -9, 3, 5, -3, -9, -23, 1, -22, 34, -10, 2
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2023

Keywords

Comments

a(n) mod 11 = F(n) mod 11 = A105955(n). This is the mod 11 rule applied to F(n) = A000045.

Examples

			F(17) = 1597, s(n) = 4 - 1 = 3, a(17) = 7 - 9 + 5 - 1 = 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[(-1)^(IntegerLength[Fibonacci[n]]-i) Part[IntegerDigits[Fibonacci[n]],i],{i,IntegerLength[Fibonacci[n]]}]; Array[a,66,0] (* Stefano Spezia, May 27 2023 *)
  • PARI
    a(n) = my(d=Vecrev(digits(fibonacci(n)))); sum(k=1, #d, (-1)^(k+1)*d[k]); \\ Michel Marcus, May 28 2023

Formula

Let [f_s(n), f_{s(n)-1}, ..., f_0] be the list of digits of F(n) = A000040(n) with s(n) = A060384(n) - 1, then a(n) = Sum_{j=0..s(n)} (-1)^j*f_j.
a(n) = A055017(A000045(n)), for n >= 0.

A110388 a(n) = F(n)*F(n+1) mod 9, where F(n) = n-th Fibonacci number.

Original entry on oeis.org

1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7
Offset: 1

Views

Author

Amarnath Murthy, Jul 27 2005

Keywords

Examples

			a(5) = 5*8 mod 9 = 4.
		

Crossrefs

Programs

  • Maple
    with(combinat): a:=n->fibonacci(n)*fibonacci(n+1) mod 9: seq(a(n),n=1..130); # Emeric Deutsch, Jul 31 2005

Extensions

More terms from Emeric Deutsch, Jul 31 2005
Showing 1-7 of 7 results.