A007953 Digital sum (i.e., sum of digits) of n; also called digsum(n).
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 8, 9, 10, 11, 12, 13, 14, 15
Offset: 0
Examples
a(123) = 1 + 2 + 3 = 6, a(9875) = 9 + 8 + 7 + 5 = 29.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- Krassimir Atanassov, On the 16th Smarandache Problem, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 1, 36-38.
- Krassimir Atanassov, On Some of the Smarandache's Problems, 1999.
- Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, Vol. 18 (2011), #P178.
- F. M. Dekking, The Thue-Morse Sequence in Base 3/2, J. Int. Seq., Vol. 26 (2023), Article 23.2.3.
- Diophante, A1762, Des chiffres à la moulinette (in French).
- Ernesto Estrada and Puri Pereira-Ramos, Spatial 'Artistic' Networks: From Deconstructing Integer-Functions to Visual Arts, Complexity, Vol. 2018 (2018), Article ID 9893867.
- A. O. Gel'fond, Sur les nombres qui ont des propriétés additives et multiplicatives données (French) Acta Arith., Vol. 13 (1967/1968), pp. 259-265. MR0220693 (36 #3745)
- Christian Mauduit and András Sárközy, On the arithmetic structure of sets characterized by sum of digits properties J. Number Theory, Vol. 61, No. 1 (1996), pp. 25-38. MR1418316 (97g:11107)
- Christian Mauduit and András Sárközy, On the arithmetic structure of the integers whose sum of digits is fixed, Acta Arith., Vol. 81, No. 2 (1997), pp. 145-173. MR1456239 (99a:11096)
- Kerry Mitchell, Spirolateral-Type Images from Integer Sequences, 2013.
- Kerry Mitchell, Spirolateral image for this sequence . [taken, with permission, from the Spirolateral-Type Images from Integer Sequences article]
- Jan-Christoph Puchta and Jürgen Spilker, Altes und Neues zur Quersumme, Mathematische Semesterberichte, Vol. 49 (2002), pp. 209-226.
- Jan-Christoph Puchta and Jürgen Spilker, Altes und Neues zur Quersumme.
- Maxwell Schneider and Robert Schneider, Digit sums and generating functions, arXiv:1807.06710 [math.NT], 2018.
- Jeffrey O. Shallit, Problem 6450, Advanced Problems, The American Mathematical Monthly, Vol. 91, No. 1 (1984), pp. 59-60; Two series, solution to Problem 6450, ibid., Vol. 92, No. 7 (1985), pp. 513-514.
- Vladimir Shevelev, Compact integers and factorials, Acta Arith., Vol. 126, No. 3 (2007), pp. 195-236 (cf. pp. 205-206).
- Robert Walker, Self Similar Sloth Canon Number Sequences.
- Eric Weisstein's World of Mathematics, Digit Sum.
- Wikipedia, Digit sum.
- Index entries for Colombian or self numbers and related sequences
Crossrefs
Cf. A003132, A055012, A055013, A055014, A055015, A010888, A007954, A031347, A055017, A076313, A076314, A054899, A138470, A138471, A138472, A000120, A004426, A004427, A054683, A054684, A069877, A179082-A179085, A108971, A169964, A179987, A179988, A180018, A180019, A217928, A216407, A037123, A074784, A231688, A231689, A225693, A254524 (ordinal transform).
For n + digsum(n) see A062028.
Programs
-
Haskell
a007953 n | n < 10 = n | otherwise = a007953 n' + r where (n',r) = divMod n 10 -- Reinhard Zumkeller, Nov 04 2011, Mar 19 2011
-
Magma
[ &+Intseq(n): n in [0..87] ]; // Bruno Berselli, May 26 2011
-
Maple
A007953 := proc(n) add(d,d=convert(n,base,10)) ; end proc: # R. J. Mathar, Mar 17 2011
-
Mathematica
Table[Sum[DigitCount[n][[i]] * i, {i, 9}], {n, 50}] (* Stefan Steinerberger, Mar 24 2006 *) Table[Plus @@ IntegerDigits @ n, {n, 0, 87}] (* or *) Nest[Flatten[# /. a_Integer -> Array[a + # &, 10, 0]] &, {0}, 2] (* Robert G. Wilson v, Jul 27 2006 *) Total/@IntegerDigits[Range[0,90]] (* Harvey P. Dale, May 10 2016 *) DigitSum[Range[0, 100]] (* Requires v. 14 *) (* Paolo Xausa, May 17 2024 *)
-
PARI
a(n)=if(n<1, 0, if(n%10, a(n-1)+1, a(n/10))) \\ Recursive, very inefficient. A more efficient recursive variant: a(n)=if(n>9, n=divrem(n, 10); n[2]+a(n[1]), n)
-
PARI
a(n, b=10)={my(s=(n=divrem(n, b))[2]); while(n[1]>=b, s+=(n=divrem(n[1], b))[2]); s+n[1]} \\ M. F. Hasler, Mar 22 2011
-
PARI
a(n)=sum(i=1, #n=digits(n), n[i]) \\ Twice as fast. Not so nice but faster:
-
PARI
a(n)=sum(i=1,#n=Vecsmall(Str(n)),n[i])-48*#n \\ M. F. Hasler, May 10 2015 /* Since PARI 2.7, one can also use: a(n)=vecsum(digits(n)), or better: A007953=sumdigits. [Edited and commented by M. F. Hasler, Nov 09 2018] */
-
PARI
a(n) = sumdigits(n); \\ Altug Alkan, Apr 19 2018
-
Python
def A007953(n): return sum(int(d) for d in str(n)) # Chai Wah Wu, Sep 03 2014
-
Python
def a(n): return sum(map(int, str(n))) # Michael S. Branicky, May 22 2021
-
Scala
(0 to 99).map(.toString.map(.toInt - 48).sum) // Alonso del Arte, Sep 15 2019
-
Smalltalk
"Recursive version for general bases. Set base = 10 for this sequence." digitalSum: base | s | base = 1 ifTrue: [^self]. (s := self // base) > 0 ifTrue: [^(s digitalSum: base) + self - (s * base)] ifFalse: [^self] "by Hieronymus Fischer, Mar 24 2014"
-
Swift
A007953(n): String(n).compactMap{$0.wholeNumberValue}.reduce(0, +) // Egor Khmara, Jun 15 2021
Formula
a(A051885(n)) = n.
a(n) <= 9(log_10(n)+1). - Stefan Steinerberger, Mar 24 2006
From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(10n+i) = a(n) + i for 0 <= i <= 9.
a(n) = n - 9*(Sum_{k > 0} floor(n/10^k)) = n - 9*A054899(n). (End)
From Hieronymus Fischer, Jun 17 2007: (Start)
G.f. g(x) = Sum_{k > 0, (x^k - x^(k+10^k) - 9x^(10^k))/(1-x^(10^k))}/(1-x).
a(n) = n - 9*Sum_{10 <= k <= n} Sum_{j|k, j >= 10} floor(log_10(j)) - floor(log_10(j-1)). (End)
From Hieronymus Fischer, Jun 25 2007: (Start)
The g.f. can be expressed in terms of a Lambert series, in that g(x) = (x/(1-x) - 9*L[b(k)](x))/(1-x) where L[b(k)](x) = sum{k >= 0, b(k)*x^k/(1-x^k)} is a Lambert series with b(k) = 1, if k > 1 is a power of 10, else b(k) = 0.
G.f.: g(x) = (Sum_{k > 0} (1 - 9*c(k))*x^k)/(1-x), where c(k) = Sum_{j > 1, j|k} floor(log_10(j)) - floor(log_10(j-1)).
a(n) = n - 9*Sum_{0 < k <= floor(log_10(n))} a(floor(n/10^k))*10^(k-1). (End)
From Hieronymus Fischer, Oct 06 2007: (Start)
a(n) <= 9*(1 + floor(log_10(n))), equality holds for n = 10^m - 1, m > 0.
lim sup (a(n) - 9*log_10(n)) = 0 for n -> oo.
lim inf (a(n+1) - a(n) + 9*log_10(n)) = 1 for n -> oo. (End)
a(n) = A138530(n, 10) for n > 9. - Reinhard Zumkeller, Mar 26 2008
a(n) mod 2 = A179081(n). - Reinhard Zumkeller, Jun 28 2010
a(n) <= 9*log_10(n+1). - Vladimir Shevelev, Jun 01 2011
a(n) = a(n-1) + a(n-10) - a(n-11), for n < 100. - Alexander R. Povolotsky, Oct 09 2011
a(n) = Sum_{k >= 0} A031298(n, k). - Philippe Deléham, Oct 21 2011
a(n) = a(n mod b^k) + a(floor(n/b^k)), for all k >= 0. - Hieronymus Fischer, Mar 24 2014
Sum_{n>=1} a(n)/(n*(n+1)) = 10*log(10)/9 (Shallit, 1984). - Amiram Eldar, Jun 03 2021
Extensions
More terms from Hieronymus Fischer, Jun 17 2007
Edited by Michel Marcus, Nov 11 2013
Comments